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Abstract	

Changes	in	the	circumstances	behind	in	situ	temperature	measurements	often	lead	

to	biases	in	individual	station	records	that,	collectively,	can	also	bias	regional	

temperature	trends.			Since	these	biases	are	comparable	in	magnitude	to	climate	

change	signals,	homogeneity	“corrections”	are	necessary	to	make	the	records	

suitable	for	climate	analysis.		To	quantify	the	effectiveness	of	U.S.	surface	

temperature	homogenization,	a	randomized	perturbed	ensemble	of	the	USHCN	

pairwise	homogenization	algorithm	was	run	against	a	suite	of	benchmark	analogs	to	

real	monthly	temperature	data.		Results	indicate	that	all	randomized	versions	of	the	

algorithm	consistently	produce	homogenized	data	closer	to	the	true	climate	signal	

in	the	presence	of	widespread	systematic	errors.			When	applied	to	the	real‐world	

observations,	the	randomized	ensemble	reinforces	previous	understanding	that	the	

two	dominant	sources	of	bias	in	the	U.S.	temperature	records	are	caused	by	changes	

to	time	of	observation	(spurious	cooling	in	minimum	and	maximum)	and	

conversion	to	electronic	resistance	thermometers	(spurious	cooling	in	maximum	

and	warming	in	minimum).	Error	bounds	defined	by	the	ensemble	output	indicate	

that	maximum	temperature	trends	are	positive	for	the	past	30,	50	and	100	years,	

and	that	these	maximums	contain	pervasive	negative	biases	that	cause	the	

unhomogenized	(raw)	trends	to	fall	below	the	lower	limits	of	uncertainty.	Moreover,	

because	residual	bias	in	the	homogenized	analogs	is	one‐tailed	under	biased	errors,	

it	is	likely	that	maximum	temperature	trends	have	been	underestimated	in	the	

USHCN.		Trends	for	minimum	temperature	are	also	positive	over	the	three	periods,	

but	the	ensemble	error	bounds	encompass	trends	from	the	unhomogenized	data.				
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1.	Introduction	

Despite	the	relative	data	richness	and	substantial	efforts	to	analyze	the	

record	over	several	decades	[Karl	et	al.,	1986,	1988;	Karl	and	Williams,	1987;	Quayle	

et	al.,	1991;	Hubbard	and	Lin,	2007;	Menne	et	al.	2009],	scientific	[Peterson,	2006;	

Pielke	et	al.,	2007a,b;	Menne	et	al.	2010]	and	political	

[http://science.house.gov/hearing/full‐committee‐hearing‐climate‐change]	

controversy	remains	over	estimates	of	the	long‐term	rate	of	temperature	change	

reported	for	the	conterminous	United	States.	Many	changes	in	instrumentation,	

observing	practice	and	siting	conditions	have	occurred	over	time,	all	of	which	can	

alter	the	bias	of	surface	temperature	measurement.	Moreover,	the	nature	and	timing	

of	these	changes	is	not	always	known,	and	overlapping	measurements	are	rarely	

available	during	transition	periods	from	one	observing	system	to	another.	While	the	

importance	of	this	kind	of	information	is	well	known	(e.g.,	GCOS,	2004),	most	

surface	temperature	measurements	come	from	networks	that	are	not	specifically	

managed	to	meet	the	desired	standards	for	climate.		Rather	they	were	designed	to	

meet	the	needs	of	agriculture,	hydrology,	weather	forecasting,	etc.	Consequently,	

there	is	a	need	to	undertake	statistically‐based	adjustments	after	the	fact	

(homogenization)	based	upon	incomplete	station	history	information.	Because	each	

observing	network	site	has	its	own	set	of	unique	non‐climatic	artifacts,	identifying	

breaks	and	estimating	adjustments	is	subject	to	some	level	of	uncertainty,	and	it	is	

unlikely	that	any	single	approach	will	work	well	for	every	situation	[Venema	et	al.	

2011].		

For	the	United	States	Historical	Climatology	Network	(USHCN),	a	fully	

automated	homogenization	algorithm	has	been	developed	based	upon	pairwise	
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neighbor	comparisons	[Menne	and	Williams,	2009].		This	automation	allows	for	the	

homogenization	of	the	large	number	of	surface	temperature	records	in	the	network	

and	provides	traceability	and	reproducibility	of	methods.		Nevertheless,	creating	a	

comprehensive	breakpoint	identification	and	adjustment	scheme	requires	making	a	

number	of	judgment	calls	at	various	decision	points	in	the	algorithm	[Thorne	et	al.,	

2005]	no	matter	how	robust	the	underlying	statistical	methods	might	be.	Decisions	

are	required	for	all	processing	steps	from	how	to	define	target	and	reference	series	

to	the	particular	statistical	breakpoint	tests	applied	and	mechanisms	for	adjusting	

each	detected	break.	Seemingly	innocuous	choices	could,	in	theory,	have	large	

impacts	upon	the	final	product.	A	frank	assessment	of	what	these	parameters	are	

and	allowing	them	to	take	on	a	range	of	reasonable	values	can	reveal	the	algorithm’s	

sensitivity	to	these	choices	[McCarthy	et	al.,	2008,	Titchner	et	al.,	2009].	With	an	

automated	algorithm,	an	ensemble	of	solutions	can	readily	be	produced	using	these	

values.		The	resulting	ensemble	can	then	provide	a	measure	of	the	parametric	

uncertainty	of	the	algorithm.			

Although	important,	this	quantification	of	internal	algorithm	uncertainty	

nevertheless	has	limited	value	in	informing	where	the	output	may	lie	with	respect	to	

the	true	climate	signal.	Use	of	internal	system	statistics	such	as	spatio‐temporal	

consistency	of	the	resulting	fields	to	pick	an	overall	winning	configuration	among	

parametric	choices	has	been	shown	to	be	potentially	misleading	in	efforts	to	extract	

the	climate	signal	[Sherwood	et	al.,	2009].		

One	way	forward	is	to	create	a	set	of	plausible	analogs	which	share	the	likely	

principal	characteristics	of	the	raw	data	such	as	spatio‐temporal	sampling	structure,	

noise	and	bias	characteristics,	but	where,	unlike	the	real	world,	the	truth	is	known	a	
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priori.	Running	the	algorithm	against	such	a	suite	allows	a	quantifiable	

benchmarking	of	algorithm	strengths	and	weaknesses.		When	applied	to	real‐world	

data,	the	same	algorithm	settings	can	lead	to	a	reappraisal	of	real‐world	trends.	

These	kinds	of	analog	cases	have	been	constructed	and	used	for	both	paleoclimate	

reconstructions	[Mann	and	Rutherford,	2002,	Mann	et	al.,	2005,	Von	Storch	et	al.,	

2004]	and	more	latterly	radiosonde	temperatures	[Titchner	et	al.,	2009,	Thorne	et	

al.,	2011a].		Benchmarking	has	also	been	carried	out	for	surface	networks	much	

smaller	than	the	conterminous	U.S.	(CONUS)	network	for	temperature	and	

precipitation	[Venema	et	al.,	2011].		Such	a	paradigm	is	also	commonplace	in	other	

scientific	areas	such	as	metrology	(termed	software	testing)	and	has	been	called	for	

as	part	of	the	incipient	global	surface	temperatures	initiative	[Thorne	et	al.,	2011b].	

This	paper	describes	initial	results	from	applying	such	an	approach	to	the	

USHCN	surface	temperature	record.	An	initial	ensemble	of	100	randomized	versions	

of	the	Menne	and	Williams	[2009]	algorithm	is	applied	across	eight	analog	datasets	

and	the	real	world	observations,	the	latter	both	with	and	without	removal	of	time	of	

observation	biases	beforehand.	This	analysis	concentrates	solely	upon	large‐scale	

long‐term	trend	metrics	because	this	is	currently	of	greatest	scientific	and	societal	

interest.	However,	the	ensembles	result	in	a	rich	set	of	data	including	estimated	

adjustments	at	the	station	level	both	for	the	analogs	and	the	real	world	data.		

The	paper	is	organized	as	follows.		The	methodology	of	Menne	and	Willams	

[2009]	is	briefly	summarized	in	Section	2.	In	Section	3	those	methodological	choices	

identified	as	decision	points	are	outlined	and	the	allocation	of	a	sensible	range	of	

values	is	discussed	along	with	the	ensemble	creation	methodology.	Section	4	

outlines	the	creation	of	a	set	of	eight	analog	worlds	–	details	of	which	were	kept	
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from	the	first	two	authors	(the	algorithm	developers)	until	they	had	produced	the	

ensembles.	In	section	5,	ensemble	results	using	the	analog	worlds	are	discussed.	

Section	6	provides	a	summary	of	the	ensembles	produced	using	real‐world	data	as	

input	in	the	context	of	implications	for	our	understanding	of	real‐world	changes	in	

surface	temperatures	in	the	lower	48	states.	Finally,	some	discussion	and	

conclusions	are	offered	in	sections	7	and	8.	In	addition	to	provision	of	extra	analyses	

and	information	in	Supplementary	Information,	full	data	including	the	analogs,	

ensemble	output,	and	automated	dataset	creation	algorithm	code	provision	will	

accompany	publication	of	this	paper	at	

{ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/algorithm‐uncertainty}.	

	

2.	The	automated	pairwise	breakpoint	identification	and	adjustment	

algorithm	

	 To	produce	the	USHCN	version	2	monthly	temperature	data	[Menne	et	al.,	

2009],	apparent	shifts	in	measurement	bias	in	temperature	records	from	USHCN	

stations	were	detected	and	corrected	through	a	relative	homogeneity	testing	

scheme	(Conrad	and	Pollack,	1962)	based	on	automated	pairwise	comparisons	of	

mean	monthly	maximum	and	minimum	temperature	series.		In	particular,	the	

algorithm	seeks	to	identify	and	adjust	for	cases	in	which	there	is	a	shift	in	one	

station	series	relative	to	many	others,	the	assumption	being	that	a	spatially	isolated	

and	sustained	shift	in	the	mean	of	the	temperature	series	is	an	artifact	caused	by	

factors	other	than	changes	in	weather	and	climate.	The	specific	processing	steps	are	

briefly	summarized	below.			

1. First,	target‐neighbor	differences	are	calculated	between	each	mean	monthly	

maximum	and	minimum	temperature	series	and	a	number	of	corresponding	

series	from	surrounding	Cooperative	Observer	stations.		Serial	monthly	
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differences	are	used	rather	than	separate	series	for	each	calendar	month	or	

season.		Since	each	station	also	gets	treated	as	a	target	series,	pairwise	

differences	are	formed	between	large	fractions	of	all	possible	combinations	

of	station	series	pairs	in	all	localized	regions	around	each	station	in	the	

network.			Although	not	always	possible,	the	algorithm	also	pairs	stations	to	

ensure	that	a	minimum	number	of	neighbors	have	data	coincident	with	the	

target	series	at	any	given	time.	

2. Next,	the	Standard	Normal	Homogeneity	Test	(SNHT;	Alexandersson,	1986)	

for	undocumented	changepoints	is	used	to	identify	breaks	in	each	paired	

difference	series.		A	hierarchy	of	changepoint	models	is	used	to	distinguish	

whether	the	changepoint	appears	to	be	a	change	in	mean	with	no	trend	

[Alexandersson	and	Moberg,	1997],	a	change	in	mean	within	a	general	trend	

[Wang,	2003],	or	a	change	in	mean	coincident	with	a	change	in	trend	[Lund	

and	Reeves,	2002].		A	break	in	any	one	difference	series	is	temporarily	

attributed	to	both	station	series	used	to	calculate	the	differences.		The	result	

of	this	step	is	a	matrix	of	potential	changepoint	dates	for	each	station	series.	

3. The	matrix	of	changepoint	dates	is	then	"unconfounded"	by	identifying	the	

station	that	is	a	common	factor	in	multiple	difference	series	that	share	the	

same	changepoint	date	(see	Menne	and	Williams,	2009	for	more	detail).			

4. After	the	unconfounding	step,	breaks	in	the	difference	series	attributed	to	a	

particular	station	may	be	assigned	to	nearly,	but	not	exactly,	the	same	month.		

This	is	because	identifying	the	timing	of	undocumented	breaks	is	subject	to	

some	sampling	uncertainty	and	the	detected	break	date	in	a	group	of	target‐

neighbor	reference	series	will	likely	cluster	around	the	true	date.		To	
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distinguish	cases	in	which	nearby	dates	represent	the	same	break	from	those	

that	are	separate	breaks,	a	window	of	uncertainty	is	estimated	as	function	of	

the	estimated	break	size	(with	smaller	jumps	having	wider	windows	of	

uncertainties	than	large	jumps).		Any	cluster	of	undocumented	changepoint	

dates	that	falls	within	overlapping	windows	of	uncertainty	is	conflated	to	a	

single	date	according	to		

a. a	known	change	date	as	documented	in	the	target	station's	history	

archive	(meaning	the	discontinuity	appears	to	be	documented),	or	

b. the	most	common	undocumented	changepoint	date	within	the	

uncertainty	window	(meaning	the	discontinuity	appears	to	be	truly	

undocumented).	

5. Steps	1–4	are	necessary	simply	to	identify	undocumented	changepoints	in	

the	USCHN	temperature	series.		In	many	cases	station	histories	are	also	

available.		Where	possible,	the	dates	of	documented	change	events	are	

combined	with	the	undocumented	breakpoint	dates	to	ensure	that	any	

documented	change	not	implicated	in	step	4	is	evaluated	as	an	additional	

potential	break.		Adjustments	are	then	determined	by	calculating	multiple	

pairwise	estimates	of	the	step	change	using	overlapping	segments	from	

neighboring	series	that	appear	to	be	homogeneous	for	a	minimal	period	

before	and	after	the	target	breakpoint.		The	range	of	pairwise	estimates	for	a	

particular	break	is	used	to	determine	a	confidence	interval	for	the	size	of	the	

adjustment.		When	this	confidence	interval	includes	zero,	an	adjustment	is	

not	made.		Adjustments	are	treated	as	seasonally	invariant.	

3.	Identification	of	algorithm	parameters	and	ensemble	settings		
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Across	the	above	steps	we	have	identified	a	total	of	17	distinct	parameters	

associated	with	decision	points	in	the	algorithm	that	required	a	judgment	call.		

These	parameters	and	their	allowable	values	are	provided	in	Table	1,	grouped	

loosely	by	their	role	in	the	processing	steps	as	described	below.		Different	permitted	

values	effectively	reflect	a	range	of	what	the	authors	consider	to	be	plausible	choices	

based	upon	fundamental	assumptions	about	data	and	metadata	veracity	and	spatio‐

temporal	coherency	of	climate	anomalies.	Such	choices	reflect	the	parametric	

uncertainty/sensitivity	of	the	pairwise	algorithm	but	do	not	entail	the	creation	of	a	

suite	of	completely	independent	algorithms.		Independent	algorithms	would	

elucidate	structural	uncertainty	[Thorne	et	al.,	2005]	and	their	development	and	

robust	evaluation	is	also	strongly	encouraged	[Thorne	et	al.,	2011b].		

	

3.1	Choosing	neighbors	to	test	for	relative	homogeneity	

In	the	default	setting	of	the	algorithm,	neighbors	are	selected	using	both	

distance	from	target	(key	word=NEIGH_CLOSE)	and	correlation	with	target	(key	

word=NEIGH_CORR).		Specifically,	a	maximum	of	the	40	highest	correlated	among	

the	hundred	nearest	neighbors	are	used	(key	word=NEIGH_FINAL).		In	the	

randomized	versions,	between	80	and	200	of	the	nearest	station	series	are	

considered	and	from	these	a	maximum	of	20	to	80	of	the	highest	correlated	series	

are	selected.		Correlation	is	calculated	using	first	differences	in	the	default	version	

and	an	effort	is	made	to	ensure	that	at	least	seven	of	the	selected	neighbors	have	

data	coincident	with	the	target	at	any	given	time	(key	word=MIN_STNS).		In	

randomized	versions,	correlation	can	also	be	calculated	directly	using	monthly	

anomaly	series	rather	than	first	differences	or	only	the	closest	neighbors	are	used	
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regardless	of	correlation	(NEIGH_CORR).		The	minimum	number	of	neighbors	is	also	

allowed	to	vary	in	the	randomization,	as	is	the	minimum	correlation	between	target	

and	neighbor	in	versions	where	both	distance	and	correlation	are	used	(key	

word=CORR_LIM).	

	

3.2	Resolving	breaks	in	the	difference	series	

Breaks	in	all	difference	series	are	resolved	using	SNHT	with	a	semi‐

hierarchical	splitting	algorithm	[Menne	and	Williams,	2005].		In	the	default	setting,	a	

5%	significance	level	is	used	(key	word=SNHT_THRES)	whereas	in	the	randomized	

versions	the	value	can	be	1,	5	or	10%.			As	described	in	step	2	above,	an	evaluation	

of	the	nature	of	the	break	is	also	conducted	at	this	stage	to	determine	whether	a	

trend	may	be	present	in	addition	to	or	instead	of	a	step.		In	the	default	setting,	the	

most	appropriate	model	is	selected	using	the	Bayesian	Information	Criterion	(BIC;	

Schwartz,	1978;	key	word=BIC_PENALTY).		In	the	randomized	versions,	model	

selection	can	be	evaluated	using	the	Akaike	Information	Criterion	(AIC;	Akaike,	

1973),	or	not	conducted	at	all.					

	

3.3	Identifying	the	cause	of	the	break	

	 Attributing	the	cause	of	a	break	requires	multiple	target‐neighbor	difference	

series	for	a	particular	target	to	have	coincident	breaks.		In	the	default	algorithm	

setting,	at	least	2	difference	series	must	implicate	the	target	(key	word=CONFIRM).		

In	the	randomization,	this	number	is	allowed	to	range	from	2	to	5.		The	date	of	the	

apparent	break	is	assigned	using	the	most	frequent	breakpoint	date	as	determined	

by	SNHT	or	via	a	metadata	event	(if	available)	for	those	dates	that	fall	within	
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overlapping	windows	of	uncertainty	for	the	timing	(key	word=AMPLOC_PCT).		

Empirical	confidence	limits	are	used	to	quantify	the	timing	uncertainty	of	a	break	

and	limits	of	90,	92.5	(default)	and	95%	may	be	used.		In	addition,	metadata	dates	

can	be	used	in	conjunction	with	undocumented	changepoint	detection	as	in	the	

default	(key	word=SHF_META),	not	used	at	all,	or	used	exclusively	without	

conducting	a	search	for	undocumented	breaks.			

	

3.4	Estimating	the	magnitude	of	the	break	

	 Estimating	the	size	of	each	break	in	a	target	series	requires	calculating	the	

magnitude	of	a	jump	in	the	target‐neighbor	difference	series	using	neighbors	that	

appear	to	be	homogeneous	for	some	number	of	months	before	and	after	the	target	

break	(key	word=ADJ_WINDOW).		The	default	value	is	±24	months,	but	in	the	

randomization	the	number	ranges	from	no	minimum	at	all	up	to	±120	months.		If	

the	target	series	appears	to	have	successive	breaks	that	are	too	close	in	time	to	

adjust	(key	word=ADJ_MINLEN),	then	an	adjustment	is	made	for	the	combined	

effect	of	the	two	or	more	breaks.		The	minimum	interval	between	adjustable	breaks	

can	range	from	18	months	in	the	default	up	to	48	months	in	the	randomized	

versions.	

More	than	one	pairwise	estimate	of	the	target	break	size	is	required	to	make	

an	adjustment	(key	word=ADJ_MINPAIR)	and	these	values	are	used	to	quantify	the	

uncertainty	in	the	adjustment.		In	the	default	version	at	least	three	estimates	of	

break	size	are	required	whereas	in	the	randomization,	this	number	may	range	from	

2	to	5.		Further,	the	estimates	of	break	size	may	be	subject	to	an	outlier	test	where	

possible	(key	word=ADJ_FILTER).		The	default	setting	uses	a	variant	of	the	Tukey	
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outlier	test	[Tukey,	1977],	but	the	randomized	versions	may	also	use	the	Bayesian	

Information	Criterion	to	determine	whether	a	step‐change	is	justified,	both	tests,	or	

none	at	all.		Following	the	outlier	test,	the	median	break	size	(default),	the	average	

break	size	or	the	average	of	the	inter‐quartile	range	is	used	as	the	final	breakpoint	

adjustment	(key	word=ADJ_EST).		Finally,	because	there	may	be	limitations	in	the	

number	of	neighbors	and	the	length	of	their	homogeneous	segments	before	and	

after	some	target	breakpoints,	there	is	an	option	to	increase	the	length	of	

homogeneous	segments	at	neighboring	series	by	merging	segments	of	these	

neighbors	where	the	confidence	limits	for	the	magnitude	of	a	break	include	zero.		

This	step	allows	an	increase	in	the	number	of	target	break	size	estimates	in	data	

sparse	periods	or	when	breaks	are	clustered	throughout	a	region	and	in	time.		The	

default	option	is	to	allow	this	merging	(key	word=NS_LOOP),	but	the	randomized	

versions	may	or	may	not	do	the	merging	step.			 	

	

3.5	Creating	a	set	of	ensembles	

To	create	the	100	member	ensemble	a	methodology	similar	to	that	employed	

by	Titchner	et	al.	[2009]	was	followed.	A	random	number	generator	was	used	to	

seed	the	value	for	each	tunable	parameter	in	each	ensemble	member.	This	ensures	

that	a	broad	range	of	plausible	solution	space	is	spanned	but	comes	at	a	cost	vis‐à‐

vis	potential	for	systematic	investigation.	Some	keywords	are	inter‐related	and	any	

illogical	combinations	were	precluded.		The	specific	settings	for	each	of	the	100	

ensemble	members	are	tabulated	in	supplementary	information.	In	addition	to	the	

randomized	ensemble	the	operational	(default)	configuration	[Menne	and	Williams,	

2009]	was	also	run	against	the	analogs.	
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4.	Creation	of	analog	cases	

To	ensure	plausible	geographical	data	variability	and	teleconnections	across	

the	conterminous	U.S.,	the	analog	benchmarks	were	derived	from	gridded	surface	

temperature	output	from	Global	Climate	Models	(GCMs).		Six	different	climate	

model	runs	were	downloaded	from	the	World	Climate	Research	Programme's	

(WCRP's)	Coupled	Model	Intercomparison	Project	phase	3	(CMIP3)	multi‐model	

dataset	[Meehl	et	al.,	2007],	each	of	which	was	sub‐sampled	in	space	and	time	to	an	

observational	data	mask	that	matches	the	U.S.	network.	GCMs	were	used	as	the	basis	

for	generating	the	analogs	because	they	reproduce	many	of	the	fundamental	surface	

temperature	characteristics.	Sensitivity	to	the	choice	of	model	fields	is	assessed	by	

applying	the	same	error	structure	to	four	different	model	estimates	to	create	one	

family	of	analogs	whose	differences	are	a	function	only	of	the	underlying	climate	

model	evolution.			

The	data	mask	applied	to	the	GCM	output	replicates	the	geographic	

distribution	and	periods	of	record	for	both	the	USHCN	stations	as	well	as	the	larger	

U.S.	Cooperative	Observer	(COOP)	network	(Fig.	1)	whose	stations	are	used	as	

neighbors	to	homogenize	the	USHCN	subset	[Menne	et	al.,	2009].	The	total	number	

of	stations	with	8	or	more	years	of	temperature	records	is	about	7,200	in	the	COOP,	

of	which	1218	constitute	the	USHCN	subset.		The	analogs	reproduce	this	data	record	

for	the	twentieth	century.		Data	for	each	analog	station	record	were	sampled	from	

the	nearest	gridbox	with	no	additional	interpolation.	Because	the	models	have	much	

coarser	resolution	than	the	U.S.	COOP	station	density,	climatological	offsets	and	

random	noise	were	applied	to	the	resampled	model	data	before	adding	any	errors	
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to	the	generated	station	records.	This	ensures	that	nearby	‘stations’	arising	from	the	

same	GCM	gridpoint	are	not	identical	and	that	the	analog	station	series	more	closely	

resemble	potential	differences	caused	by	elevation	and	other	features	unique	to	

each	local	environment.				

The	efficiency	of	neighbor‐based	homogenization	algorithms	depends	largely	

on	the	magnitude	of	the	covariance	between	neighboring	station	series,	which	is	

generally	related	to	station	density.	If	the	covariance	is	too	high	in	the	analogs,	the	

test	results	will	be	overly	pessimistic	because	the	breakpoints	will	be	harder	to	

identify	in	the	analog	world	than	in	the	real‐world	and	vice‐versa.	The	noise	added	

to	the	analog	series	was	calibrated	to	have	the	approximately	the	same	

characteristics	as	inter‐station	statistics	following	homogenization	of	USHCN	under	

Menne	et	al.	[2009].		Specifically,	the	standard	deviation	of	the	inter‐station	

difference	series	and	their	AR(1)	autocorrelation	were	assessed	(Fig.	S1)	across	the	

network	as	a	whole.	While	the	real	and	analog	world	station	covariance	structures	

were	designed	to	be	broadly	consistent,	the	homogenization	results	will	reflect	any	

deviation	in	the	covariance	between	generated	series	and	what	occurs	in	the	real	

COOP	network.		

Four	principal	break	structures	were	imposed	on	the	analogs	by	the	third	

author,	the	nature	of	which	was	unknown	to	the	first	two	authors	until	the	100	

member	ensembles	were	produced	for	each	analog.		The	imposed	errors	were	

specifically	designed	to	test	the	efficacy	of	the	algorithm’s	ability	to	estimate	the	

true	long‐term	trend	at	the	regional	scale.		The	analogs	were	intended	to	cover	a	

range	of	scenarios	from	overly‐simple	to	arguably	too	challenging	to	ascertain	the	

performance	of	the	pairwise	homogenization	algorithm	under	a	number	of	
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scenarios.		Specifically,	if	a	homogenization	algorithm	cannot	cope	with	a	simple	

error	structure	then	its	use	on	real‐world	data	is	problematic.	Likewise,	creating	

difficult,	but	not	impossible	benchmarks	should	allow	algorithm	developers	clearer	

goals	for	improvements	to	address	the	tougher	issues	that	may	exist	in	the	real‐

world.	

The	details	of	the	errors	are	provided	in	Table	2,	but	in	all	cases	breaks	were	

assigned	as	seasonally	invariant	step	changes	with	varying	degrees	of	associated	

metadata.		The	real‐world	situation	is	undoubtedly	more	complex;	however,	a	trade	

off	is	required	in	this	initial	analysis	(where	the	concept	is	being	applied	to	this	

particular	problem	for	the	first	time)	between	complexity	and	ability	to	analyze	the	

results.		Future	exercises	should	include	more	complex	(realistic)	error	structures	

[e.g.	Venema	et	al.,	2011]	and	global	benchmarking	[Thorne	et	al.,	2011b]	of	this	

algorithm,	which	is	now	also	used	to	create	the	global	GHCN	v3	product	[Lawrimore	

et	al.,	2011].			The	details	of	the	analogs	are	described	in	more	detail	below	in	order	

of	the	complexity	of	the	error	models.	

	

4.1	“Perfect	data”	

The	‘perfect	data’	analog	was	produced	solely	to	test	whether	the	algorithm	

can	do	“harm”	by	identifying	numerous	false	breaks	and	substantially	altering	the	

real‐world	behavior	in	the	unlikely	event	that	the	real‐world	raw	data	are	perfectly	

homogeneous.	It	consists	of	exactly	the	same	data	as	that	for	‘Clustering	and	sign	

bias	–	c20c1’	(Section	4.4)	prior	to	the	addition	of	errors.		

	

4.2	“Big	breaks,	good	metadata”	
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The	‘Big	breaks,	good	metadata’	analog	consists	of	predominantly	large	

breaks	with	no	preferential	sign	bias	and	the	timing	of	each	break	is	recorded	in	

associated	metadata.	While	the	imposed	breaks	have	a	large	standard	deviation,	

they	are	normally	distributed	around	zero,	which	means	that	there	are	a	number	of	

very	small	breaks	that	may	not	be	considered	statistically	significant.	The	average	

period	between	breaks	is	twenty	years,	but	error	seeding	was	random	(for	all	

analogs)	so	there	are	stations	with	breaks	in	closer	succession	and/or	with	more	

than	the	average	of	5	breaks	in	the	record	(and	vice‐versa).		

	

4.3	“Mixed	break	sizes,	some	clustering”	

In	the	‘Mixed	breaks,	some	clustering’	analog	a	more	plausible	error	structure	

was	added.	It	is	known,	for	example,	that	the	USHCN	network	experienced	at	least	

two	pervasive	changes	that	afflicted	the	majority	of	the	network	with	a	change	in	

observation	time	and	a	move	from	liquid	in	glass	(LiG)	thermometers	in	Stevenson	

screens	to	the	electronic	resistance	thermometer	known	at	the	Maximum/Minimum	

Temperature	Sensor	[MMTS;	Quayle	et	al.;	1991;	Menne	et	al.,	2009];	that	the	

metadata	is	far	from	perfect	and	may	be	less	complete	for	the	earlier	parts	of	the	

record;	and	that	not	all	breaks	will	be	large.	In	this	analog	these	aspects	were	added,	

but	the	clustering	of	similar	breaks	is	relatively	relaxed	in	time	compared	to	our	

current	knowledge	of	the	real	world	data	and	the	number	of	applied	breaks	is	still	

arguably	lower	than	the	likely	frequency	of	real‐world	breaks	with	an	average	

return	period	of	between	fifteen	and	twenty	years.	

	

4.4	“Clustering	and	sign	bias”	family	
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The	error	structure	applied	to	these	analogs	contains	more	breaks	and	some	

exhibit	a	much	tighter	degree	of	clustering	of	similar	events	than	in	‘Mixed	breaks	

some	clustering’	reflecting	that	the	majority	of	the	LiG	to	MMTS	transition	happened	

well	within	a	decade	[Menne	et	al.,	2009].		Many	breaks	have	a	sign	bias	leading	to	a	

false	warming	trend	in	the	‘raw’	analog	world	data.	This	is	opposite	to	the	suspected	

behavior	in	the	real‐world	where	the	raw	data	are	apparently	negatively	(cool)	

biased	[Menne	et	al.,	2009].	Whether	the	sign	bias	is	positive	or	negative	is	less	

important	than	adding	an	overall	sign	preference	to	ascertain	whether	the	shift	

between	raw	and	adjusted	series	is	likely	to	be	uncovering	a	real	trend	bias	in	the	

real‐world	data	or	occurring	solely	by	chance.	

Four	variants	with	this	error	structure	were	produced	using	different	GCMs	

to	address	whether	algorithm	performance	depends	on	the	presence	of	an	

underlying	signal	and	the	phasing	and	nature	of	the	climate	variations	arising	from	

natural	variability.	The	first	two	variants	‘clustering	and	sign	bias	–	c20c1’	and	

‘clustering	and	sign	bias	–	c20c2’	both	consider	output	from	20th	Century	climate	

simulations	but	from	different	models.	These	are	meant	to	sample	any	potential	

impacts	of	the	differences	in	model	physics,	phasing	and	characterization	of	natural	

variability	and	inclusion	versus	exclusion	of	specific	forcings	[Santer	et	al.,	2005,	

2006].		Nevertheless,	both	models	have	grossly	the	same	multi‐decadal	

characteristics	of	an	accelerating	warming	trend.	If	the	ability	to	recover	the	true	

trend	is	impacted	by	this	choice	then	it	is	likely	that	algorithm	performance	is	

sensitive	to	natural	variability.	The	third	variant	of	this	family,	‘clustering	and	sign	

bias	–	control’,	again	uses	a	different	model	but	in	this	case	no	external	forcings	are	

changed	so	there	is	no	forced	signal	component.	Comparing	this	to	the	first	two	
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analogs	in	the	family	permits	exploration	as	to	whether	algorithm	performance	is	

impacted	by	the	presence	or	absence	of	a	real	underlying	climate	change	signal.	The	

final	analog	‘clustering	and	sign	bias	–	committed’	allows	an	assessment	of	sensitivity	

to	shape	of	the	underlying	signal.	The	c20c	forcings	runs	approximate	in	their	

underlying	forcing	an	exponential	increase	due	to	greenhouse	gas	increases,	which	

is	reflected	in	the	multi‐decadal	temperature	changes.	A	committed	forcings	run	

involves	no	increase	in	forcing	but	starts	with	the	coupled	climate	system	

substantially	out	of	equilibrium.	The	forced	change	component	in	such	a	run	is	

therefore	more	akin	to	a	natural	logarithm	with	relatively	rapid	changes	early	in	the	

record	as	faster	response	components	catch	up	with	the	now	stable	forcing,	tailing	

off	later	on	as	slower	deep	ocean	responses	continue.		

	

4.5	“Very	many	mainly	small	breaks”	

The	final	analog	‘Very	many	mainly	small	breaks’	represents	the	most	

pessimistic	set	of	assumptions	about	the	errors.	A	small	percentage	of	the	breaks	

are	large,	but	most	are	small.	There	are	breaks	on	average	once	every	ten	years	

throughout	the	network	and	forty	percent	of	the	breaks	have	no	metadata	recorded.	

Furthermore,	sixty	percent	of	the	breaks	have	a	sign	tendency	associated	with	them.	

Despite	not	explicitly	including	clustering,	this	analog	is	arguably	hardest	for	any	

dataset	algorithm	to	cope	with.	First,	any	breakpoint	algorithm	is	going	to	have	real	

trouble	finding	and	adjusting	for	small	breaks	without	greatly	inflating	the	false	

positive	count,	yet	these	breaks	constitute	real	units	of	red	noise	that	project	most	

strongly	onto	the	trend.	Secondly,	with	so	many	breaks	having	a	sign	bias	the	failure	

to	detect	a	substantial	proportion	of	these	is	likely	to	lead	to	biases,	on	average,	in	
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the	adjustments	because	apparently	homogeneous	neighbor	segments	will	not	

always	be	so	and	in	these	cases	will	yield	a	systematic	adjustment	tendency.	Lastly,	

having	so	many	breaks	in	the	data	will	lead	to	a	much	greater	preponderance	to	

have	intra‐station	breaks	in	close	proximity.	Any	algorithm	will	struggle	when	the	

interval	between	breaks	is	short	relative	to	the	time	step	regardless	of	break	size	

because	a	smaller	homogeneous	segment	population	requires	a	larger	test	statistic	

value	for	significance	to	be	attained.	

	

5.		Results	against	analog	cases	

The	pairwise	homogenization	algorithm	produces	a	list	of	breakpoint	dates	

and	adjustments	for	each	input	series.		Although	it	is	possible	to	evaluate	results	at	

the	individual	station	series	level,	the	focus	here	is	on	the	aggregate,	network‐wide	

impacts	as	reflected	in	changes	to	the	regional	mean	value.		We	present	these	

aggregate	results	beginning	with	the	simplest	analog	error	structure	and	moving	

progressively	to	the	more	complex	models.	

Figure	2	provides	a	geographic	perspective	of	the	trends	in	the	“perfect	data”	

analog	both	for	the	raw	input	data	(Fig.	2a)	and	for	the	data	homogenized	by	the	

default	version	of	the	algorithm	(Fig.	2b).		The	trends	were	calculated	by	

interpolating	the	annual	temperature	values	to	a	0.25x0.25	degree	grid	and	then	

calculating	the	trend	for	each	grid	box	as	described	in	Menne	et	al.	[2009].			The	

default	version	of	the	algorithm	essentially	preserves	the	pattern	of	trends	although	

there	appears	to	be	some	minor	smoothing	of	the	spatial	pattern.		Nevertheless,	in	

the	case	of	“perfect	data”,	no	version	of	the	pairwise	algorithm	makes	unwarranted	

adjustments	sufficient	to	move	the	average	CONUS	trend	away	from	the	true	trend,	
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and	the	average	series	produced	by	the	100	randomized	versions	of	the	algorithm	

are	indistinguishable	from	those	based	on	the	raw	input	data	(see	Supplementary	

Information).				

In	the	“Big	breaks,	perfect	metadata”	case,	the	unadjusted	input	data	are	

characterized	by	a	noisy,	heterogeneous	field	of	trends	caused	by	the	imposition	of	

random	breaks	in	the	network	throughout	the	series.		As	shown	in	Fig.	3a,	the	

impact	is	a	mix	of	trends	with	positive	and	negative	biases.		In	this	case,	the	default	

algorithm	comes	close	to	reproducing	the	true	spatial	pattern	and	magnitude	of	

trends	(Figs.	3b	and	3c),	which	is	expected	given	that	the	timing	of	all	breaks	is	

known.		Nevertheless,	some	randomized	versions	of	the	algorithm	do	not	make	use	

of	the	metadata	and	treat	all	breaks	as	undocumented.		Further,	the	use	of	a	

significance	test	when	estimating	the	magnitude	of	each	break	means	the	recovery	

of	the	true	climate	signal	from	the	input	data	is	not	necessarily	perfect.		However,	

since	there	is	not	an	overall	bias	associated	with	the	imposed	errors,	the	

randomized	versions	of	the	algorithm	all	produce	CONUS	average	trends	that	do	not	

deviate	substantially	from	the	true	background	trend	(Fig.	4)	and	there	is	no	sign	

preference	to	the	potential	residual	error.			

In	the	“Mixed	break	sizes,	some	clustering”	analog,	errors	are	clustered	in	

time	(between	1915	and	1975	and	somewhat	more	heavily	from	1915	to	1945),	and	

a	sign	preference	is	present	in	the	errors.		In	this	case,	the	homogenized	trends	since	

1900	and	since	1950	from	the	ensemble	are	all	greater	than	the	raw	input	trend	

(Fig.	5),	an	indication	that	the	algorithm	is	accounting	for	the	sign	bias	in	the	

imposed	errors	during	the	periods	when	the	errors	are	concentrated.				



21	
	

In	the	“Clustering	and	sign	bias”	family	of	analogs,	the	imposed	errors	exhibit	

an	even	larger	sign	preference	and	are	more	clustered	in	time,	including	nearer	to	

the	end	of	the	series,	which	biases	average	trends	for	all	periods	since	1900.		The	

impact	of	the	sign	bias	on	the	raw	input	trends	for	the	full	period	can	be	seen	in	Fig.	

6.		Relative	to	the	true	values	(Fig.	6b)	a	larger	number	of	trends	are	too	high	rather	

than	too	low	in	the	unadjusted	data	(Fig.	6a).		Nevertheless,	the	default	version	of	

the	pairwise	homogenization	algorithm	comes	close	to	reproducing	both	the	

magnitude	and	pattern	of	the	underlying	temperature	trends	(Fig.	6c)	in	spite	of	the	

sign	preference.		As	shown	in	Fig.	7,	all	randomized	versions	of	the	algorithm	

produce	homogenized	series	that	bring	the	CONUS	average	closer	to	the	true	value	

for	all	trend	periods,	with	some	algorithm	configurations,	including	the	default	

version,	yielding	results	very	close	to	“truth”	‐	moving	the	trend	more	than	95%	

percent	towards	the	true	climate	signal.		In	particular,	the	impact	of	the	pervasive	

positive	errors	seeded	in	70%	of	the	analog	series	after	1980	is	reduced	by	all	

ensemble	members.		Notably,	the	potential	residual	error	is	essentially	one‐tailed	in	

this	case;	there	is	a	low	probability	of	overcompensating	for	the	bias	changes	by	a	

small	amount.			

Figure	8	provides	a	summary	overview	of	the	“Clustering	and	sign	bias”	

family	of	analogs	(and	additional	time	series	are	provided	as	Supplementary	

Information).		Because	each	of	these	four	analogs	was	seeded	with	identical	errors,	

any	difference	in	homogenization	performance	for	a	particular	ensemble	member	is	

a	function	only	of	the	presence	or	absence	of	a	forced	response	component	and	the	

timing	and	patterns	of	natural	internal	variations	simulated	by	the	various	

underlying	models.		Results	indicate	that	while	the	efficiency	of	individual	members	
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is	somewhat	dependent	on	the	nature	of	the	underlying	climate	signal	and	

covariance	structure,	the	relative	performance	of	each	member	measured	by	the	

degree	to	which	the	true	trend	is	recovered	remains	largely	unchanged	from	analog	

to	analog	within	the	family.		In	other	words,	the	performance	of	any	particular	

version	of	the	algorithm	appears	to	be	largely—but	not	completely‐‐invariant	of	

underlying	climate	signal	as	shown	in	Fig.	9.		Moreover,	a	comparison	of	Figures	4,	7,	

and	8	also	suggests	that	the	underlying	error	structure	is	a	more	fundamental	

consideration	in	the	ability	of	the	algorithm	to	retrieve	the	true	underlying	climate	

signal	rather	than	the	nature	of	the	climate	signal	itself.	In	light	of	this,	it	may	be	

possible	to	choose	a	number	of	pairwise	algorithm	configurations	that	should	be	

expected	to	be	relatively	good	performers	under	a	wide	variety	of	error	

characteristics.		

Results	for	the	most	challenging	analog	“Very	many	small	breaks	with	sign	

bias”	are	summarized	in	Figs.	10	and	11.		In	this	case,	a	large	percentage	of	the	

breaks	are	likely	below	the	magnitude	that	can	be	efficiently	detected	by	the	

pairwise	(or	perhaps	any)	algorithm.		Consequently,	the	various	ensembles	

produced	by	the	randomized	versions	of	the	algorithm	do	not	move	the	trend	far	

enough	towards	the	true	trend	value	(Fig.	10).		Likewise,	the	geographic	distribution	

of	trends	(Fig.	11)	indicates	that	the	systematic	bias	caused	by	the	imposed	errors	

are	only	partially	removed	by	the	homogenization	algorithm,	the	consequence	of	

which	is	a	residual	mean	bias	that	underestimates	the	true	CONUS	trend	and	a	

heterogeneous	field	of	trends.			

Finally,	we	note	that	a	100‐member	randomization	was	considered	at	the	

outset	to	be	sufficient	to	explore	the	sensitivity	of	the	various	parameters,	especially	
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since	not	all	of	them	were	expected	to	have	a	substantial	impact	on	the	results.		By	

way	of	confirmation,	the	“clustering	and	sign	bias‐C20C1”	analog	was	run	through	

500	randomizations	of	the	algorithm	and	the	results	were	compared	to	the	original	

100	member	ensemble	as	well	as	smaller	numbers	of	combinations.		As	Figs.	S6‐S10	

indicate,	the	median	and	interquartile	ranges	are	well	represented	with	100	

members	and	the	worst	case	scenario	implication	from	this	expanded	

randomization	is	that	the	range	of	the	ensemble	trends	may	underestimated	by	

about		25%.	However,	it	is	worth	noting	that	the	only	outlier	in	the	expanded	500	

member	ensemble	not	captured	by	the	100‐member	ensemble	resulted	from	a	

particularly	conservative	set	of	settings	that	minimized	the	impact	of	the	

homogenization.	More	generally,	it	is	the	conservative	tail,	which	minimizes	

adjustments,	that	is	poorly	quantified	with	smaller	ensemble	sizes	rather	than	the	

more	aggressive	tail	of	the	distribution	that	samples	solutions	closer	to	the	target	

truth.		In	future	the	potential	exists	to	massively	parallelize	such	dataset	creation	

through	citizen	scientists	and	their	IT	capabilities	akin	to	e.g.	climateprediction.net	

[Allen,	1999]	if	the	pairwise	homogenization	code	can	be	made	suitably	portable	and	

platform	independent.	This	could	also	open	up	new	opportunities	such	as	derivation	

of	a	neural	network	algorithm	tuning	approach	either	explicitly	or	through,	for	

example,	interfacing	with	the	serious	gaming	community	[Krotoski,	2010].		

To	summarize,	based	on	all	analog	results	we	conclude	that:	

1. In	cases	where	there	is	no	sign	bias	to	the	seeded	errors,	the	randomized	

versions	of	the	algorithm	produces	results	clustered	around	the	true	trend.			

2. For	cases	in	which	there	were	errors	seeded	with	a	sign	bias,	all	randomized	

versions	of	the	algorithm	moved	the	trend	in	the	correct	direction.			
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3. Rather	than	overcorrect,	the	randomized	algorithms	generally	do	not	correct	

the	trend	enough	in	the	presence	of	errors	with	a	sign	bias	because	of	

incomplete	adjustments	that	bias	the	underlying	trends.	The	propensity	to	

under‐correct	is	sensitive	to	the	frequency	and	magnitude	of	imparted	

breaks	with	more	frequent	and	smaller	breaks	leading	to	more	incomplete	

corrections.		

4. The	algorithm	is	potentially	capable	of	adjusting	data	even	when	pervasive	

network	wide	quasi‐contemporaneous	changes	of	a	similar	nature	occur.	

5. Although	algorithm	performance	is	somewhat	impacted	by	natural	climate	

variations	and	the	presence	of	forced	changes,	this	impact	is	secondary	to	

that	of	the	error	structure	imparted	on	the	raw	observations.		The	error	

structure,	which	is	unknown	in	the	real‐world,	is	the	primary	limiting	factor	

on	algorithm	efficiency.	

	

6.	Reassessment	of	likely	real‐world	trends	

	 We	applied	the	same	100	randomized	versions	of	the	algorithm	(as	well	as	

the	default	version)	to	the	real‐world	monthly	mean	maximum	and	minimum	

temperature	data.		Both	the	raw	temperature	data	and	data	first	corrected	for	

changes	in	the	time	of	observation	[Karl	et	al.	1987]	were	used	as	input	to	the	

pairwise	algorithm.		(Note	that	the	pairwise	algorithm	is	run	operationally	on	data	

already	de‐biased	for	changes	in	the	time	of	observation	[Menne	et	al.,	2009]).		This	

correction	relies	solely	upon	intra‐station	statistics	and	metadata	and	accounts	for	

the	specific	systematic	impact	that	changes	in	the	time	of	observation	bias	(TOB)	

have	on	monthly	mean	temperatures.	Although	TOB	changes	are	small	at	many	
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locations,	there	is	no	a	priori	reason	why	the	pairwise	algorithm	cannot	be	applied	

to	data	without	this	step,	especially	since	many	changes	in	time	of	observation	

coincide	with	other	station	changes	that	are	evaluated	by	the	pairwise	algorithm	

following	the	TOB	adjustment.	Running	the	pairwise	algorithm	on	both	raw	and	

TOB‐debiased	input	data	provides	a	useful	quasi‐independent	check	on	the	TOB	

adjustment	itself	and	is	also	a	test	of	the	skill	of	the	pairwise	algorithm	independent	

of	the	benchmarks.	

Trends	in	monthly	maximum	and	minimum	temperatures	for	three	separate	

sub‐periods	and	for	all	ensemble	members	are	shown	in	Figure	12	(time	series	for	

the	ensemble	are	provided	as	Supplementary	Information).		Unlike	for	the	analog	

data	the	true	trend	in	the	real	data	is	unknown.		While	there	is	considerable	spread	

in	the	ensemble,	all	versions	of	the	pairwise	algorithm	produced	adjusted	maximum	

temperature	data	with	trends	higher	than	in	the	raw	data	(Figure	12a).		The	default	

(operational)	version	of	the	algorithm	produced	trends	above	the	median	of	all	

solutions,	but	not	close	to	the	highest.		In	these	respects,	results	for	the	real	world	

U.S	maximum	temperatures	have	some	resemblance	to	the	“clustering	and	sign	

bias”	family	and	the	“very	many	mainly	small	breaks”	analog	results.			

Homogenization	results	for	maximum	temperature	data	with	the	prior	

correction	for	TOB	are	shown	in	Fig.	12b.		Because	the	TOB	impact	is	negative	for	

both	maximum	and	minimum	temperatures	[Vose	et	al.,	2003],	mean	monthly	

maximum	temperatures	adjusted	for	TOB	have	higher	trends	than	the	raw	data	

[Menne	et	al.	2009].		Nevertheless,	even	with	this	prior	correction,	all	versions	of	the	

pairwise	homogenization	algorithm	still	yield	CONUS	average	maximum	

temperature	trends	that	exceed	the	TOB‐only	adjusted	input	data	for	all	periods.		
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We	can	therefore	infer	that	other	network	changes	(e.g.,	instrument	changes)	have	

artificially	reduced	maximum	temperature	trends	like	the	TOB.			Not	surprisingly,	

the	greatest	differences	between	the	input	data	(raw	or	de‐biased	for	TOB)	and	the	

pairwise	adjusted	data	occur	in	the	post‐1979	period,	when	the	widespread	

installation	of	the	MMTS	led	to	an	artificial	decrease	in	maximum	temperatures	

[Qualye	et	al.,	1991;	Hubbard	and	Lin,	2006,	Menne	et	al.,	2010].	Notably,	trends	from	

the	operational	(default)	version	for	maximum	temperatures	are	almost	identical	

whether	TOB	adjustments	are	applied	prior	to	instigation	or	left	to	the	algorithm	to	

adjust	for.		

Given	that	all	ensemble	members	move	the	maximum	temperature	trend	

away	from	the	raw	and	TOB‐adjusted	values	in	the	same	manner	as	the	analog	data	

with	sign	bias	errors,	uncertainty	estimates	for	maximum	temperatures	can	be	

considered	as	essentially	one‐tailed	with	the	raw	data	forming	an	absolute	lower	

bound	for	confidence	limits	defining	the	true	magnitude	of	maximum	temperature	

trends.		Realistically,	the	TOB‐only	corrected	data	very	likely	form	this	lower	

boundary	since	all	algorithm	versions	move	the	raw	input	trend	in	the	same	

direction	as	the	TOB‐	only	adjusted	data,	and	all	versions	further	increase	the	TOB‐

only	adjusted	trends	when	these	data	are	used	as	input.		Regarding	the	upper	

bound,	it	is	quite	possible	that	the	operational	version	of	the	homogenization	

algorithm	is	underestimating	the	true	magnitude	of	U.S.	average	maximum	

temperature	trends,	in	agreement	with	Menne	et	al.	[2010]	and	Fall	et	al.	[2011].			

For	minimum	temperatures,	the	impact	of	homogenization	depends	largely	

on	the	period	over	which	the	trend	is	calculated	(Figure	12c).		In	the	long‐term	

(1900‐2010),	the	randomized	algorithms	are	divided	between	increasing	and	
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decreasing	the	U.S.	trend	relative	to	the	raw	value.		In	contrast,	members	tend	to	

increase	the	trend	for	the	period	1950‐2010,	but	reduce	it	for	the	period	1979‐2010.		

This	suggests	that	the	magnitude	of	the	time	of	observation	bias	likely	dominates	

the	period	after	1950,	but	not	necessarily	after	1979.		With	the	prior	TOB	correction	

(Figure	12d),	all	members	reduce	the	1979‐2010	trend,	consistent	with	evidence	

that	the	widespread	transition	from	liquid‐in‐glass	thermometers	to	electronic	

thermistors	led	to	an	artificial	increase	in	minimum	temperatures,	which	likely	

overwhelms	the	impact	of	any	TOB	changes	during	this	period.		Again,	the	

operational	algorithm	version	is	broadly	similar	for	all	trend	periods	regardless	of	

whether	TOB	adjustments	are	applied	first.		

For	the	longer‐term	trends	(1900	and	1950	onwards),	the	ensembles	

encompass	the	raw	data,	even	when	first	corrected	for	TOB.		This	suggests	that	

there	are	factors	causing	breaks	with	a	negative	sign	bias	before	1979	(in	addition	

to	the	TOB)	that	are	offsetting	the	largely	positive	shifts	caused	by	the	transition	to	

MMTS	afterwards.		For	example,	there	may	have	been	a	preference	for	station	

relocations	to	cooler	sites	within	the	network,	that	is,	away	from	city	centers	to	

more	rural	locations	especially	around	the	middle	of	the	twentieth	century	[Hansen	

et	al.	2001].			Detecting	undocumented	breaks	in	the	pre‐1979	minimum	

temperature	data	may	also	play	a	role	since	there	appears	to	be	a	bias	in	favor	of	

undocumented	negative	shifts	[Menne	et	al.	2009].		However,	short	of	a	more	

thorough	analysis	into	the	cause	of	the	non‐TOB	related	breaks	prior	to	1979,	

uncertainty	estimates	for	the	long‐term	minimum	temperature	trends	must	include	

the	raw	data.		For	the	period	after	1979,	we	can	be	confident	that	the	TOB‐corrected	

data	likely	form	an	absolute	upper	bound	for	minimum	temperature	trends	with	the	
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lower	bound	being	less	than	the	trends	produced	by	the	default	version	of	the	

algorithm.			Likewise	for	the	period	after	1950,	the	raw	data	are	likely	an	absolute	

lower	bound	for	trend	estimates	because	of	the	TOB.			

Finally,	it	is	interesting	to	note	that	the	ensemble	ranges	for	maximum	and	

minimum	temperatures	overlap	across	all	trend	periods	(Table	3)	when	the	raw	

data	are	used	as	input.		This	suggests	that	much	of	the	observed	difference	in	

maximum	and	minimum	temperature	trends	in	the	contiguous	U.S.	is	linked	to	

changes	in	observing	practices,	and	that	the	true	difference	is	likely	much	smaller	

than	the	network‐wide	raw	data	suggest	as	noted	also	by	Fall	et	al.	[2011].			

	

7.	Discussion	

Over	past	few	decades	a	great	deal	of	effort	has	been	devoted	to	collate,	

prepare	and	analyze	historical	surface	temperature	data.		More	recently,	fully	

automated	homogenization	methods	have	started	to	emerge	that	are	designed	to	

remove	the	impacts	of	artifacts	that	bias	the	records	of	large	networks.		Moreover,	

these	automated	methods	have	been	shown	to	be	capable	of	achieving	comparable	

skill	to	manual	methods	[Venema	et	al.,	2011].	This	opens	up	the	possibility	of	more	

readily	exploring	the	sensitivities	of	climate	data	homogenization	to	fundamental	

methodological	choices	and	parametric	decisions.		

Here	we	have	assessed	the	sensitivity	of	USHCN	trend	estimates	to	the	

parametric	choices	used	in	the	automated	pairwise	homogenization	algorithm	

[Menne	and	Williams,	2009].			A	brute	force	style,	monte‐carlo	simulation	type	

ensemble	has	been	created	by	identifying	decision	points	in	the	algorithm	and	

allowing	each	to	take	on	a	range	of	values	in	random	combinations.		To	benchmark	
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the	performance	of	the	algorithm,	eight	analogs	to	U.S.	temperature	record	were	

created	that	share	many	of	the	fundamental	characteristics	of	the	observed	data,	

except	that,	unlike	the	real	world,	the	underlying	climate	signal	is	known.		The	

analog	cases	and	perturbed	ensemble	build	upon	the	assessment	described	in	

Menne	and	Williams	[2009]	and	provide	further	evidence	that	pairwise	algorithm	

has	a	low	false	alarm	for	truly	homogeneous	input	data	and	that	it	yields	unbiased	

regional	trends	when	network‐wide	errors	are	themselves	unbiased.		In	cases	

where	the	analog	world	data	contained	biased	errors	clustered	in	time,	all	

randomized	versions	of	the	homogenization	algorithm	moved	the	average	trend	for	

the	conterminous	U.S.	closer	to	the	true	trend,	though	generally	not	far	enough.	This	

most	likely	reflects	a	twofold	problem	–	first,	the	breaks	that	are	not	detected	by	the	

algorithm	are	likely	to	share	the	sign	bias	and	thus	their	impact	will	not	be	

accounted	for;	second,	the	unidentified	breaks	also	may	be	aliased	onto	adjustment	

estimates	for	the	detected	breaks	leading	to	biased	estimates	on	average.	

Nevertheless,	the	consistency	of	the	analog	world	results	leads	to	additional	

confidence	in	interpreting	the	homogenization	results	for	the	real	world	data.		

When	applied	to	the	real‐world	USHCN	observations,	the	ensemble	

essentially	reaffirms	earlier	conclusions	regarding	the	pervasive	biases	in	the	raw	

USHCN	temperature	record.	In	the	case	of	maximum	temperature,	there	is	strong	

evidence	that	there	are	widespread	negative	(cool)	biases	that	artificially	depress	

the	true	rate	of	temperature	increase	for	all	periods	since	1900.	These	biases	are	the	

sum	of	time	of	observation	change	effects	after	1950	as	well	as	other	changes,	

primarily	the	transition	to	electronic	resistance	thermometers	beginning	in	the	

middle	1980s.		Notably,	the	raw	maximum	temperature	trend	for	the	USHCN	is	
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below	the	range	of	confidence	limits	defined	by	parametric	uncertainty	of	the	

algorithm	for	all	trend	periods.	

Benchmarking	results	for	minimum	temperature	records	appear	to	be	

somewhat	more	complicated,	especially	for	the	period	before	1950	when	

parametric	uncertainty	is	large.		Since	1950,	results	are	in	agreement	with	earlier	

studies	that	the	competing	biases	of	changes	in	observation	time	(spurious	cooling)	

and	installation	of	electronic	resistance	thermometers	(spurious	warming)	

dominate.		This	competition	among	biases	leads	to	raw	data	that	underestimate	the	

true	USHCN	trends	since	1950	and	overestimate	the	trends	since	1979.			Estimates	

of	parametric	uncertainty	overlap	for	trends	in	maximum	and	minimum	

temperatures	for	all	trend	periods	and	suggest	that	some	asymmetry	in	these	trends	

may	be	due	to	residual	biases	in	the	adjusted	data.	

	 The	analog	results	also	revealed	that	the	ensemble	was	far	from	equi‐

probable.	Certain	ensemble	members	were	consistently	worse	than	others	

regardless	of	the	error	structure	or	underlying	spatio‐temporal	variations	arising	

from	model	estimated	natural	variability.		A	supposedly	equi‐probable	solution	

approach	such	as	used	in	HadSST3	[Kennedy	et	al.,	2011a,b]	may,	however,	be	

viable.		Additional	evaluation	may	allow	further	optimization	and	the	selection	of	set	

of	parameters	that	can	produce	a	more	equi‐probable	solution	set.	This	allows	any	

potential	non‐linear	interdependencies	between	such	uncertain	choices	to	be	

explicitly	represented.		

	

8.	Concluding	remarks	
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The	benchmarking	experiment	described	here	was	carried	out	as	a	proof	of	

concept.	In	this	way,	the	sensitivity	analysis	is	limited	to	parametric	(internal)	

uncertainty	sources.	We	encourage	more	benchmarking	efforts	like	Venema	et	al.	

[2011]	so	that	multiple	homogenization	algorithms	can	be	run	against	a	common	set	

of	global	analogs	as	proposed	by	the	surface	temperatures	initiative	[Thorne	et	al.,	

2011a].	In	particular,	the	proposed	double	blind	nature	would	be	a	distinct	

advantage,	although	it	should	be	stressed	that	our	analysis	was	blind	in	that	the	

nature	of	the	errors	was	only	made	available	to	the	first	two	authors	after	the	

ensembles	were	completed.		Blind	studies	avoid	potential	pitfalls	associated	with	

tuning	an	algorithm	to	perform	well	under	certain,	specific	error	assumptions	when	

in	reality	the	true	error	structure	is	unknown.		In	future	it	would	be	useful	to	

consider	more	complex	error	structures	with,	for	example,	seasonal	cycles	or	local	

temporary	trends	in	addition	to	step‐like	changes.		

The	creation	of	an	ensemble	of	pairwise	algorithm	solutions	to	assess	

parametric	uncertainty	and	its	application	to	both	the	real	observations	and	eight	

analogs	of	those	observations	has	served	to	strengthen	our	existing	understanding	

of	U.S.	temperature	records.	The	analogs	indicate	that	the	homogenization	algorithm	

does	not	add	spurious	trends	to	the	spatial	temperature	average	and	adjusts	the	

data	in	the	right	direction	in	the	presence	of	network‐wide	systematic	biases,	

although	not	necessarily	far	enough.		The	benchmarking	reaffirms	that	the	dominant	

systematic	and	network‐wide	biases	in	the	U.S.	are	caused	by	changes	in	time	of	

observation	from	the	mid‐twentieth	Century	onwards	(spurious	cooling	to	both	

maximum	and	minimum	temperatures)	and	conversion	from	liquid	in	glass	to	

electronic	resistance	thermometers,	primarily	during	the	mid‐1980s	(spurious	
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cooling	in	maximum	and	warming	in	minimum).	Results	for	the	real‐world	are	

similar	regardless	of	whether	time	of	observation	adjustments	are	applied	in	

advance	or	left	to	the	pairwise	algorithm	to	adjust	directly,	building	confidence	both	

in	the	reality	of	this	effect	and	the	capabilities	of	the	algorithm.		

We	conclude	that	raw	maximum	temperatures	are	outside	the	assessed	

range	of	plausible	trends	‐	the	real	U.S.	trends	are	very	likely	greater	than	the	raw	

data	imply.	Raw	minimum	temperatures	are	not	as	obviously	biased,	at	least	at	the	

centennial	timescale.		Internal	uncertainty	for	the	homogenized	maximum	and	

minimum	trends	over	the	periods	1900‐2010,	1951‐2010	and	1979‐2010	does	not	

encompass	zero	so	there	is	high	confidence	in	the	conclusion	that	the	conterminous	

U.S.	temperature	trends	are	positive	at	these	time	scales.	However,	the	internal	

algorithm	uncertainty	for	the	rate	of	temperature	change	indicates	that	the	default	

settings	used	of	the	pairwise	algorithm	used	to	produce	the	USHCN	Version	2	

adjusted	temperature	data	is	likely	underestimating	maximum	temperature	trends.		
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Table	1	System	tunable	keywords	varied	in	the	creation	of	the	100	member	
ensemble.	Brackets	denote	default	values	as	described	in	Menne	and	Williams	
[2009].	Ensemble	settings	are	available	as	part	of	the	supplementary	information	in	
.csv	format.	

Algorithm	
Step	

Key	word	
name	

Permitted	
values	 Functional	Description	

Choosing	
neighbors	

NEIGH_CLOSE	 80,	[100],	
150,	200	

Maximum	number	of	neighboring	series	to	
consider	

NEIGH_CORR	 [1diff],	
near,	corr	

Method	used	for	ranking	neighbors	based	
on	degree	of	similarity	(1diff=calculate	
correlation	using	first	differences;	
near=sort	by	distance	only;	corr=use	
anomalies	to	calculate	correlation)		

CORR_LIM	 [0.1],	0.5,	
0.7	

Minimum	correlation	coefficient	with	
target	to	quality	as	a	neighbor	

MIN_STNS	 5,	[7],	9	 Minimum	number	neighbors	with	
coincident	data	

NEIGH_FINAL	 20,	[40],	
60,	80	

Final	(maximum)	number	of	neighbors	per	
target	station	

Resolving	
breaks	in	
difference	
series	

SNHT_THRES	 1,	[5],	10	 SNHT	significance	threshold	(in	percent	)	

BIC_PENALTY	 [BIC],	AIC,	
none	

Penalty	function	used	to	determine	the	
form	of	the	break	(BIC=Bayesian	
Information	Criterion;	AIC=Akaike	
Information	Criterion;	none=no	model	
fitting)	

Identify	
the	series	
causing	
the	break	

SHF_META	 ‐1,	0,	[1]	

Toggle	for	metadata	(‐1=only	adjust	when	
break	coincides	with	metadata;	0=run	
without	use	of	metadata;	1=identify	
undocumented	breaks	and	exploit	
metadata	when	availabe)	

AMPLOC_PCT	
90,	[92],	
95	

Confidence	window		table	used	to	coalesce	
changepoints		

CONFIRM	 [2],3,4,5	

Number	of	target‐neighbor	difference	
series	with	coincident	breaks	required	to	
implicate	the	target	as	the	source	of	the	
break	

Estimating	
the	

magnitude	
of	the	
break	

ADJ_MINLEN	 [18],	24,	
36,	48	

Minimum	length	of	data	period	(in	
months)		that	can	be	adjusted	

ADJ_MINPAIR	 [2],	3,	4,	5	
Minimum	number	of	pairwise	estimates	of	
break	size	required	to	determine	the	size	
of	adjustment	

ADJ_OUTLIER	 0,	[1]	 Toggle	to	test	and	remove	outliers	using	
the	Tukey	outlier	test	

ADJ_WINDOW	 0,	[24],	60,	
120	

Minimum	number	of	months	before	and	
after	a	break	in	the	difference	series	
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necessary	to	calculate	breakpoint	size	

ADJ_FILTER	
bicf,	
[conf],	

both,	none

Outlier	filtering	method	for	the	pairwise	
break	estimates	

ADJ_EST	
Aavg,	
[Medi],	
Qavg	

Method	used	to	determine	the	
adjustement	factor	from	the	multiple	
pairwise	estimates	

NS_LOOP	 0,	[1]	

Toggle	to	merge	data	segments	when	the	
breaksize	is	statistically	insignificant	(this	
loop	increases	the	length	of	the	
homogeneous	segments	available	to	
estimate	other	breakpoint	sizes	in	data	
sparse	periods)	
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Table	2.	Look	up	table	for	gross	characteristics	of	the	set	of	analog	worlds.	Breaks	
are	added	in	all	cases	as	seasonally	invariant	deltas	to	all	points	prior	to	the	
assigned	breakpoint.	Breakpoint	sizes	and	locations	were	allocated	by	random	
number	generators	seeded	from	system	time	at	time	of	instigation.	
Analog	world	 Model	 Forcings	and	

period	in	
model	years	

Break	and	metadata	structure	
imparted	

Perfect	data	 MIROC	3.2	
hires	[K‐1	
model	
developers	
(2004)]	

20th	Century	
forcings,	1900‐
1999,	run	1	

No	breaks,	no	metadata	

Big	breaks,	
good	
metadata	

GFDL	CM2.0	
[Delworth	et	
al.,	2006]		

20th	Century	
forcings,	1861‐
1960,	run1	

5	per	station	on	average	seeded	
randomly	across	the	network	and	
through	time,	with	metadata	
(σ=1.5,	avg=0)	

Mixed	break	
sizes,	some	
clustering	

Same	as	
perfect	data	

Same	as	perfect	
data	

70%	of	stations	within	15	years	
starting	1930,	with	metadata	
(σ=0.7,	avg=‐0.2)	
70%	of	stations	within	30	years	
starting	1945,	with	metadata	
(σ=0.4,	avg=‐0.3)	
Average	one	break	per	station	
randomly	seeded	throughout	
period,	with	metadata	(σ=0.35,	
avg=0)	
No	metadata,	more	prevalent	
early	in	record,		4	per	station	on	
average	(σ=0.3,	avg=‐0.1)	
1.5	false	metadata	events	per	
station,	more	prevalent	later	

Clustering	and	
sign	bias	–	
c20c1	

Same	as	
perfect	data	

Same	as	perfect	
data	

70%	of	stations	within	7	years	in	
1980s,	with	metadata	(σ=0.7,	
avg=0.35)	
70%	of	stations	within	30	years	
from	1945,	with	metadata	(σ=0.4,	
avg=‐0.2)	
Average	one	per	station	in	latter	
half	of	record	with	metadata	
(σ=0.5,	avg=0.8)	
Average	of	2	breaks	per	station	
associated	with	metadata	(σ=0.8,	
avg=0)	
No	metadata,	more	prevalent	
early	in	record,		4	per	station	on	
average	(σ=0.8,	avg=0)	
Average	2	metadata	events	not	
associated	with	a	break.	
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Clustering	and	
sign	bias	–	
c20c2	

CSIRO	MK3.5	
[Gordon	et	
al.,	2002]	

20th	Century	
forcings,	1871‐
1970,		run	1	

Same	breaks	as	“clustering	and	
sign	bias	c20c1”	

Clustering	and	
sign	bias	‐	
control	

UKMO	‐
HadGEM1	
[Johns	et	al.,	
2006]	

No	changes	in	
external	
forcings,	2000‐
2099	

Same	breaks	as	“clustering	and	
sign	bias	c20c1”	

Clustering	and	
sign	bias	‐	
committed	

NCAR	
CCSM3.0	
[Collins	et	al.,	
2006]	

Stabilisation	
run	2000‐2099	

Same	breaks	as	“clustering	and	
sign	bias	c20c1”	

Very	many	
mainly	small	
breaks	

NCAR	PCM	
[Washington	
et	al.,	2000]	

CO2	
1%/yr	to	
2xCO2,		0071‐
0170,	

2	breaks	on	average	per	station	
seeded	randomly	throughout	
network	and	over	time	with	
metadata	(σ=1,	avg=0)	
2	breaks	on	average	per	station	
but	probability	twice	as	prevalent	
later	in	record	and	sign	biased,	
with	metadata	(σ=0.25,	avg=‐0.2)	
2	breaks	on	average	per	station	
but	probability	twice	as	prevalent	
later	in	record,	with	metadata	
(σ=0.25,	avg=0)	
4	breaks	per	station	unassociated	
with	metadata,	more	prevalent	
early,	slight	sign	bias	(σ=0.2,	
avg=‐0.075)	
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Table	3.	Summary	of	maximum	and	minimum	homogenized	temperature	trends	
(°C/decade)	from	the	101	member	ensemble.		Trends	for	the	pre‐homogenization	
input	data	are	also	shown.	

	 Maximum	
Temperature	
(raw	input)	

Minimum	
Temperature
(raw	input)	

Maximum	
Temperature	
(input	first	
corrected	for	

TOB)	

Minimum	
Temperature	
(input	first	
corrected	for	

TOB)	
1900‐2010	

Lowest	 0.0148 0.0027 0.0256 0.0142
Highest	 0.0548 0.0852 0.0613 0.0989 
Median	 0.0393 0.0585 0.0504 0.0738
Average	 0.0379 0.0568 0.0474 0.0704 

Original	input	
data		 0.0008 0.0474 0.0212 0.0741 

1950‐2010	
Lowest	 0.0322 0.1082 0.0583 0.1294 
Highest	 0.1165 0.1622 0.1289 0.1988
Median	 0.0823 0.1402 0.1058 0.1676
Average	 0.0808 0.1395 0.1019 0.1681 

Original	input	
data	 ‐0.0049 0.1163 0.0473 0.1755 

1979‐2010	
Lowest	 0.1538 0.1633 0.1970 0.1962 
Highest	 0.2962 0.2267 0.3070 0.2875
Median	 0.2374 0.2130 0.2698 0.2523 
Average	 0.2327 0.2110 0.2635 0.2523

Original	Input	
Data	

0.1059 0.2241 0.1791 0.3081 
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Figure	1.		Distribution	of	COOP	stations	in	the	CONUS	(black	dots)	and	the	U.S.	
HCN	version	2	sites	(red	triangles).	
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Figure	2.	(a)	gridded	trends	for	the	period	1900‐1999	for	the	“Perfect	data”	
raw	input;	(b)	the	homogenized	version	of	the	data	produced	by	the	default	
version	of	the	pairwise	homogenization	algorithm.	
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Figure	3.		Gridded	trends	for	the	period	1900‐1999	for	the	“Big	breaks,	good	
metadata”	USHCN	analog:	(a)	Raw	(unadjusted)	input	data;	(	b)	True	
(homogeneous)	data;	and,	(c)	data	homogenized	by	the	default	version	of	the	
pairwise	algorithm.	
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Figure	4.	Annual	average	contiguous	U.S.	(CONUS)	temperature	series	
calculated	using	the	USHCN	monthly	temperature	series	from	the	“Big	breaks,	
good	metadata”	analog.		Spatial	averages	are	based	on	output	from	the	100	
randomized	versions	of	the	pairwise	algorithm	(in	black)	as	well	as		from	the	
default	version	(in	orange).		CONUS	averages	for	the	non‐homogenized	(raw)	
input	values	with	the	seeded	errors	are	shown	in	red.		Averages	based	on	the	
true	data	series	without	errors	are	shown	in	green.		Box	plots	depicting	the	
range	of	CONUS	average	trends	for	the	three	different	summary	periods	used	
in	Trenberth	et	al.	[2007]	produced	by	the	100	randomized	versions	of	the	
pairwise	homogenization	algorithm	are	also	shown	along	with	the	trends	
based	on	the	true	data,	the	raw	input	input	data	with	errors	and	on	the	
homogenized	data	produced	by	the	default	algorithm.	Whiskers	denote	the	
full	range,	boxes	the	inter‐quartile	range	and	horizontal	line	within	the	box	
the	median	estimator	for	the	100	member	ensemble.	
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Figure	5.		As	in	Fig.	4,	except	for	the	“Mixed	Break	Sizes	with	Some	Clustering”	
analog.	
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Figure	6.		As	in	Fig.	3	except	for	the	“Clustering	and	Sign	Bias—C20C1”	analog.	
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Figure	7.	as	in	Fig.	4	except	for	the	“Clustering	and	sign	bias‐c20c1”	analog.			
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Figure	8.		Box	plots	depicting	the	range	of	CONUS	average	trends	for	the	three	
different	summary	periods	used	in	Trenberth	et	al.	[2007]	produced	by	the	
100	randomized	versions	of	the	pairwise	homogenization	algorithm.		The	
magnitude	of	the	CONUS	average	trends	based	on	the	raw	input	data	are	given	
by	the	red	“X”,	the	magnitude	of	the	true	(homogeneous)	trends	are	given	by	
the	green	“X”.		The	magnitude	of	trends	produced	by	the	default	version	of	the	
homogenization	algorithm	is	shown	by	the	yellow	“X”.	Whiskers	denote	the	
full	range,	boxes	the	inter‐quartile	range	and	horizontal	line	within	the	box	
the	median	estimate	for	the	100	member	ensemble.	
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Figure	9.		Ranking	from	1	(worst)	to	101	(best)	of	the	degree	to	which	each	
version	of	the	algorithm	was	able	to	recover	the	true	period‐of‐record	CONUS	
trend	in	analog	series	seeded	with	errors	that	have	a	sign	bias.	The	default	
version	of	the	algorithm	is	denoted	as	ensemble	member	“0”	and	members	“1‐
100”	are	the	randomized	versions.		Dark	shades	denote	high	rankings	and	
indicate	versions	of	the	algorithm	that	were	the	most	successful	at	recovering	
the	CONUS	average	trend	for	each	particular	analog	world;	light	shadings	
denote	low	rankings	where	versions	were	the	least	successful	in	recovering	
the	true	trend.	
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Figure	10.		As	in	Fig.	2,	except	for	the	“very	many	mainly	small	breaks”	analog.	
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Figure	11.	As	in	Fig.	3	for	the	“very	many,	mainly	small	breaks”	analog.	
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Figure	12.	As	in	Fig.	7,	except	for	the	observed	USHCN	version	2	monthly	
temperature	series	using	the	following	as	input	to	the	adjustment	algorithm:		
(a)	raw	monthly	maximum	temperatures;	(b)	time	of	observation	adjusted	
maximum	temperatures;	(c)	raw	minimum	monthly	temperatures;	(d)	time	of	
observation	adjusted	minimum	temperatures.		



 

Figure S1.  Distribution of the standard deviation and AR(1) autocorrelation in the monthly 
mean temperature differences at USHCN temperature stations and their 40 most highly 
correlated Cooperative Observer Network “neighbors”.  Differences were calculated using the 
USHCN version 2 homogenized data (blue) and the “Clustering and Sign Bias—C20C1” analog 
data (green).   



 

 

 

Figure S2.	As in Fig. 4, except for the “Perfect data” analog. 



 

 

Figure S3. As in Fig. 4, except for the “Clustering and sign bias‐C20C2” analog. 



 

 

Figure S4.	As in Fig. 4, except for the “Clustering and Sign Bias—control” analog. 



 

 

Figure S5.  As in Fig. 4, except for the “Clustering and Sign Bias—committed” analog. 



 

Figure S6.  Distribution of the minimum CONUS average trend (1900‐1999) for various numbers 
of ensemble members.  The distribution represents the minimum trend produced by varying 
numbers of the randomized versions of pairwise homogenization algorithm (drawn from a total 
population of 500).  The minimum trend for the 100‐member solution shown in Fig. 7 is 
indicated as the “Original 100 Member Ensemble” value.   



 

Figure S7. Distribution of the maximum CONUS average trend (1900‐1999) for various numbers 
of ensemble members.  The distribution represents the maximum trend produced by varying 
numbers of the randomized versions of pairwise homogenization algorithm (drawn from a total 
population of 500).  The maximum trend for the 100‐member solution shown in Fig. 7 is 
indicated as the “Original 100 Member Ensemble” value.   

 



 

Figure S8.  Distribution of the median CONUS average trend (1900‐1999) for various numbers of 
ensemble members.  The distribution represents the median trend produced by varying 
numbers of the randomized versions of pairwise homogenization algorithm (drawn from a total 
population of 500).  The median trend for the 100‐member solution shown in Fig. 7 is indicated 
as the “Original 100 Member Ensemble” value.   



 

Figure S9. Distribution of the 75th percentile of CONUS average trend (1900‐1999) for various 
numbers of ensemble members.  The distribution represents the 75th percentile of the trend 
produced by varying numbers of the randomized versions of pairwise homogenization 
algorithm (drawn from a total population of 500).  The 75th percentile trend for the 100‐
member solution shown in Fig. 7 is indicated as the “Original 100 Member Ensemble” value.   

 



 

Figure S10.  Distribution of the 25th percentile of CONUS average trend (1900‐1999) for various 
numbers of ensemble members.  The distribution represents the 25th percentile of the trend 
produced by varying numbers of the randomized versions of pairwise homogenization 
algorithm (drawn from a total population of 500).  The 25th percentile trend for the 100‐
member solution shown in Fig. 7 is indicated as the “Original 100 Member Ensemble” value.   

 



 

 

Figure S11.	As in Fig. 4, except for the real world U.S. HCN mean monthly maximum 
temperatures (raw input). 



 

Figure S12.	As in Fig. 4, except for the real world U.S. HCN mean monthly maximum 
temperatures (TOB‐adjusted input). 



 

Figure S13. 	As in Fig. 4, except for the real world U.S. HCN mean monthly minimum 
temperatures (raw input). 



 

Figure S14. As in Fig. 4, except for the real world U.S. HCN mean monthly minimum 
temperatures (TOB‐adjusted input). 


