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Introduction 

 

This project is a complex, multi-institutional effort aimed at generating climate quality 

temperature datasets from satellite-borne atmospheric sounders.  This report only covers the part 

of this work assigned to Remote Sensing Systems, which is to perform comparisons of various 

satellite products with each other, and with other sources of atmospheric temperature 

measurements.  The purpose of this part of the work is to use such comparisons to help 

determine the reasons for, and significance of, any discrepancies between satellite datasets.  This 

report covers 6 months of work, from June 1, 2011 to November 30, 2011. 

One of the most important goals of this part of the work is to intercompare results from 

the satellite-based datasets with those from other data sources.  In this report, we report results 

we have obtained by comparing MSU/AMSU temperatures with output from recent reanalysis 

efforts.  These results, in contrast to those presented for the previous six months, focus on the 

spatial patterns in trends over the satellite period (1979-present).  We have also extended our 

analysis to include results from the JRA-25 reanalysis, and results from the upper 

troposphere/tropopause region. 

We have also begun an analysis that compares RSS and STAR results for individual 

satellites.  By analyzing individual satellite results, we can develop a better understanding of the 

reasons for the differences between RSS and STAR results. 

 

 

 



Our report is divided into 3 sections. 

 

1. Description of the reanalysis data studied. 

2. Comparisons of spatial patterns in long-term trends. 

3. Comparisons of global time series derived from single satellite data. 

 

 In addition, we have prepared a manuscript for publication from the short-time trend 

analysis we discussed in our last report, in collaboration with Peter Thorne from the Cooperative 

Institute for Climate and Satellites (North Carolina).  We anticipate submitting this manuscript 

within 1 month. 

 

Description of reanalysis datasets. 

We have now completed our analysis using 3 reanalysis datasets, the European Centre for 

Medium Range Forecasting (ECMWF) Reanalysis-Interim (ERA-Interim) (Dee et al. 2011), the 

Modern ERA Retrospective Analysis for Research and Applications (MERRA) (Rienecker et al. 

2011), and the Japanese 25-year Reanalysis Project (JRA-25) (Onagi et al., 2007).  Output from 

all three reanalyses now begin in January 1979 and continues through the present.  All three 

reanalyses ingest satellite data in addition to in situ data.  This satellite data includes data from 

the microwave sounders studied here, so there is some question whether the reanalyses and the 

MSU/AMSU datasets are truly independent datasets – they are probably not fully independent, 

but exhibit different long-term behavior than any of the satellite datasets.  Despite these 

questions, we have concluded that such comparisons are instructive.  Because modern analysis 

systems use some type of 4-d var assimilation system, i.e. they assimilate data using the actual 

time of the measurement, the effects of changing measurement times in the satellite systems (the 

so-called diurnal drift (Mears and Wentz 2005)) are thought to be automatically addressed.  And, 

since the reanalysis is thought to be a synthesis of all available data using a fixed analysis 

system, in the best case scenario the reanalysis results can be a very good representation of the 

climate system.  Unfortunately, the reanalyses are not free from problems that arise from changes 

in the observing system, and in particular when new or different types of satellite data are 

suddenly added, and the new measurements are biased relative to the model expectations.  In the 

future, we also plan to evaluate data from the NCEP Climate Forecast System Reanalysis 

(CSFR).  Processing of these data into synthetic MSU/AMSU brightness temperatures is still 

underway. 

 

Progress in comparison with modern reanalysis products. 

 Since the previous progress report, the temporal coverage of ERA-Interim has been 

extended back to the beginning of the satellite era (1979), and we have constructed MSU/AMSU 

equivalent brightness temperatures from both the ERA-Interim and from the JRA-25 reanalysis 

using our MSU/AMSU specific fast radiative transfer model.  In Figure 1, we plot global time 

series for middle tropospheric temperature (TMT) anomalies from STAR, RSS, and UAH 

satellite datasets, and from the MERRA, ERA-Interim, and JRA-25 reanalyses.  It is interesting 

to note that the spread in long term trends is slightly larger for the reanalysis output (0.063 to 

0.160 K/decade, a spread of 0.97 K/decade) than it is for the satellite-derived trends (0.56 to 

0.141 K/decade, a spread of 0.85 K/decade), despite the diverse data sets that are ingested by the 

reanalysis systems which should constrain the results.   

 In Fig 2, we plot the difference between each TMT time series from the mean of all time 



series.  Several features become apparent.  First, the JRA-25 differences show a number of 

discontinuous jumps, with the most prominent jumps occurring in late 1998 and again in 2005.  

These may be due to the introduction of new kinds or sources of data into the reanalysis system 

at these times.  From about 2000 onwards, the MERRA reanalysis trends upward relative to the 

mean, which the STAR dataset trends downward.  This is despite the fact that MERRA ingests 

the STAR L1C brightness temperatures and serves as a counter argument to those that claim that 

the large trends seen in MERRA are due to its use of STAR brightness temperatures. 

 

 
Figure 1.  Globally averaged monthly time series of middle tropospheric temperature 

(TMT) for the three satellite datasets (STAR, RSS, and UAH), and 3 modern reanalysis 

products (MERRA, JRA-25, and ERA-Interim).  The data have been smoothed to remove 

variability on time scales shorter than 6 months.   
 

 
 

Figure 2.  Globally averaged monthly time series of the difference of each time series 

plotted in Figure 1 from the mean of all six time series. Again, the data have been 

smoothed to remove variability on time scales shorter than 6 months.  



 
 

Figure 3.  TMT trend maps (1979-2010) for the three satellite datasets, and 3 reanalyses. 

 

 In Figure 3, we plot maps for trends in middle tropospheric temperature (TMT) for the 

six datasets.  All datasets exhibit the same basic features, with more warming in the northern 

latitudes, and less warming or cooling near the south pole.  There are a few differences that stand 

out.  First, the STAR dataset shows signficantly more spatial variability in the trends than either 

of the two other satellite datasets.  Second, none of the reanalyses show as much warming in the 

arctic as is seen in the satellite datasets.  Third, both MERRA and STAR show more warming in 

the tropics than is apparent in any of the other datasets.  STAR also appears to show a land/ocean 

trend contrast, particularly surrounding Africa that is not as large in the other datasets.   

 

Single Satellite Comparisons. 

Comparisons of results for individual satellites can help isolate the causes of any 

differences observed for the combined datasets.  To date, we have completed a preliminary study 

of the differences between RSS and STAR data for the AMSU satellites that both groups use.  

STAR does not yet include data from the AQUA satellite.  Unfortunately, individual satellite data 

are not available from the UAH group.  We begin by comparing data for AMSU channel 5, or 

TMT. 

In Figure 4, we show the difference  (STAR-RSS) for global (80S to 80N) monthly 

averages for NOAA-15, NOAA-18, and METOP-A.  The data for NOAA-15 show a troubling 

~0.1 K discontinuity at the beginning of 2001, with the STAR data warming relative to RSS at 

this time.  Evaluation of the average brightness temperatures for two years on either side of the 

discontinuity shows that this shift is due to a change in overall brightness in one of the datasets, 

i.e. the magnitude of the shift is independent  



 

Figure 4. Global mean (80S to 80N) difference (STAR-RSS) time series for AMSU 

channel 5. All time series show a small offset and seasonal cycle, probably caused by the 

different calibration procedures used by the two groups.  For this channel, the difference 

time series for NOAA-15 (shown in purple) shows a discontinuous step in January 2001 

of about 0.1 K.  The difference time series for METOP-A (shown in light blue) shows 

several months with large differences (October 2009, September and October 2011.  

These are likely to be due to missing data in one of the datsets (see Figure 5b). 

 

of location or season.  This suggests that it is due to a change in calibration, or an error in the 

application of the calibration algorithm in one of the datasets.  More research is needed to 

resolve the cause of this shift.  

There are also large anomalies in the difference time series for METOP-A in October 

2009, and September and October of 2011.  Further analysis suggests that this is due to missing 

data for these months in one of the datasets.  As an example, in Figure 5a we show a map of the 

brightness temperature differences for October 2011, along with maps of brightness temperatures 

for STAR (Figure 5b) and RSS (Figure 5c).  In Figure 5a, we can see regions of large difference 

that roughly mimic the shape of data from a single orbit.  This suggests that a number of orbits 

may be missing or misanalyzed in one of the datasets.  In Figure 5b, we can see a region of 

anomalously low brightness temperature in the STAR data that is not present in the RSS data 

(Figure 5c), indicating that the problem for this month resides in the STAR data.  A similar set of 

maps from October 2009 is less conclusive. 

Fortunately, the other 2 AMSU channels used for the deep-layer products show fewer 

problems.  In Figure 6, we plot globally averaged difference time series for AMSU channel 7 

(TTS).  For the satellites plotted (NOAA-15 in purple and NOAA-18 in blue) there are no large 

discrepancies, though there appears to be a downward trend in the differences starting in about 

2008.  As a practical matter for the combined time series, this is partly countered by the small 

upward trend in the NOAA-18 differences. 



a) 

 

b) 

 

c) 

 
Figure 5.  a) Map of AMSU 5 brightness temperature differences (STAR minus RSS) for 

October 2011, METOP-A.  b).  Map of STAR AMSU 5 brightness temperatures, October 

2011.  c) Map of RSS AMSU 5 brightness temperatures, October 2011.  Note that the 

region of large difference is similar to the region for data derived from one orbit. 



Figure 6.  Time series of globally averaged brightness temperature differences (STAR 

minus RSS) for AMSU channel 7.   

 

In Figure 7, we plot the globally averaged time series differences for AMSU9 (TLS).  For TLS, 

there are no obvious trends in the differences, but the intra-dataset differences are quite different 

between satellites.  This is likely to be because the final intersatellite offsets have not been 

applied to the single satellite STAR data that are available via the web. 

 

 

 
Fig. 7.  Time series of globally averaged brightness temperature differences (STAR minus 

RSS) for AMSU channel 9.   

 

Planned activites for the next 6 months 

 Finish manuscript preparations describing short-term trend results 

 Complete comparisons with the CSFR reanalysis. 

 Perform further work on comparisons with radio occultation data (GPS-RO) and TLS 

datasets. 

 Update comparisons with changes in total water vapor column using SSM/I and AMSR-E 

data. 
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Introduction 
 

This project is a complex, multi-institutional effort aimed at generating climate quality 
temperature datasets from satellite-borne atmospheric sounders.  This report only covers the part 
of this work assigned to Remote Sensing Systems, which is to perform comparisons of various 
satellite products with each other, and with other sources of atmospheric temperature 
measurements.  The purpose of this part of the work is to use such comparisons to help 
determine the reasons for, and significance of, any discrepancies between satellite datasets.  This 
report covers 6 months of work, from December 1, 2011 to May 31, 2012. During this time 
period, we have focused on the submission of a paper describing an analysis of short-term trends 
in RSS, UAH, and STAR satellite data, and data from a variety of homogenized radiosonde 
datasets.  This manuscript was submitted for publication in the Journal of Geophysical Research, 
Atmospheres and the first round of reviews have been received.  The reviewers requested a 
substantial amount of additional work, so of which is described in this report.  A copy of the 
paper as submitted is appended to the end of this report.  In addition, we have compared TLT 
results from the RSS and UAH groups with a new version of the total column water vapor results 
from microwave imaging instruments. 

 
1. Short term trend analysis using the Temperature Total Troposphere (TTT) developed by Fu 

et al. 
2. Effects of Sampling and dataset version on short-tem trend results 
3. Short term trend analysis in the extratropics 



4. Comparison of TLT trends from RSS and UAH with trends in total column water vapor. 
 
Short-Term Trend Analysis using TTT 

Our analysis of short term trends in middle tropospheric temperature (TMT), which we 
reported in a previous progress report, was criticized by reviewers because the results could be 
influenced by cooling in the lower stratosphere.  This influence is easiest to see in plots of short-
term (5 –year or 10-year) trend differences between the lower tropospheric temperature, and 
temperatures higher in the troposphere.  This type of analysis was first performed by Randall and 
Herman (2007) – our work is largely a response and update of this earlier work.  When TMT is 
used for the mid/upper tropospheric temperature, the can be significant influence in the 
differences due to short or long term trends in the stratosphere.  This is because about 10% of the 
weight in TMT comes from emission in the stratosphere.  To address this concern, we repeated the 
analysis using the “Temperature Total Troposphere” or TTT product proposed by Fu and 
Johanson, (2005).  By forming a linear combination of TMT and lower stratospheric (TLS) 

 
Fig. 1.  Differences (TLT minus TMT) in short term trends in atmospheric temperature between adjacent 
layers for each radiosonde dataset.  In each case, the satellite data is sampled at the radiosonde 
locations, and the differences in spatial sampling lead to the differences between the satellite results for 
the different panels.  The temporal range plotted in RH2008 is shaded in yellow.



measurments (see Eq. 1), they found that most of the stratospheric influence could be removed. 
 

1.1 0.1TT MT LST T T= ⋅ − ⋅          (1) 
 
In Figs. 1 and 2, we show plots of the difference between short-term trends in TLT and TMT 

(Fig. 1) or TTT (Fig. 2).  In all cases, the TTT results were calculated using TMT and TLS products 
from the same research group.   

In Fig. 1, there is a large fluctuation in the 5-year trend differences in the 1990-1995 period.  
This is likely to be associated with the eruption of Mt. Pinatubo in June 1991.  The eruption 
injected the most aerosols into the stratosphere since the eruption of Krakatoa in 1883.  The 
effect of these aerosols was to heat the stratosphere, via direct absorption of solar radiation, and 
cool the troposphere due to the related reduction of solar radiation at Earth’s surface.  These 
effects decayed over the next few years as the aerosols in the stratosphere were depleted.  The 

 

Fig. 2.  Same as Figure 1 in the main text, except calculated using the TT (Total Troposphere) product 
defined in Fu and Johansan (2005) to be 1.1*TMT -0.1*TLS.  This weighted combination of channels 
reduces the contribution of the stratosphere relative to TMT.  The use of TT changes the time series 
considerably, and in general the variability of the time series is reduced, probably due to the reduction of 
the influence of volcano-induced stratospheric warming.  The overall conclusions drawn from Fig 10 are 
unaltered, with some of the largest discrepancies occurring outside the range considered by RH2008, and 
RSS being in better agreement with all radiosonde datasets.   



result is the any short term trend that ended after June 1991 was smaller than normal in the 
troposphere, and larger than normal in the stratosphere.  This causes the low values for the TLT 
minus TMT trends in the early 1990’s in Figure 1.  A similar argument applies to the larger 
values of the trend difference in the late 1990’s.  When TTT is used instead (Figure 2), the effects 
of stratospheric warming are reduced, leading to a reduction in the feature in all datasets.   In 
fact, in almost all cases, the use of TTT reduces the variability of the short term trend difference, 
indicating that TTT and TLT are more closely coupled than TMT and TLT, and that there are many 
instances where changes in the troposphere and stratosphere are anti-correlated.   

 
The Effects of Dataset version and Sampling Method on Short Term Trends 

We also have performed further work on our short-term trend analysis to determine whether 
updated versions of the UAH and RSS dataset and method for generating comparison datasets 
have a significant impact on the results.  In Fig. 3, we compare the mean absolute difference 
between 5-year trends in the satellite data, and 5-year trends in homogenized radiosonde data.  In 
the to row (panels a and b), the satellite data is sampled at the locations of valid radiosonde data.  
This leads to fairly good agreement between radiosonde and satellite data.  In panel a, we use the 
current versions of the UAH and RSS data, while in panel b, we use two previous versions of the 
RSS and UAH data.  The differences between the results presented in the two panels is not large, 
though the later version of the RSS data tends to agree better with radiosondes than the previous 
version.  This difference is most apparent for the HadAT dataset.  In panel c, we compare the 

 

Fig. 3.  Bar graphs of mean absolute difference between 5-year trends of satellite and homogenized 
radiosonde data.  a) current satellite data was sampled at radiosonde locations.  b) Same as panel a, 
except calculated using previous versions of the RSS (V3.0) and UAH (V5.1) datasets.  The STAR dataset is 
the same.  For this plot, the period of analysis is 1979-2007, so any changes in the STAR results are due to 
the change in analysis period.  c) Same as panel b, except that global, area-weighted averaging was used 
to construct the global averages.  d). Same as panel d, except than land-only area weighted averages were 
used for the MSU dataset.   



radiosonde data with global, area weighted versions of the satellite data.  Here the mean absolute 
differences are much larger, because of the spatial mismatch between the radiosonde and satellite 
sampling.  The situation can be improved slightly by using a land-only subset of the satellite 
observations as was done by Randall and Herman.  This improvement is probably because the 
land-only sampling more closely matches the hemispheric distribution of the radiosonde data for 
the HadAT, RAOBCORE, RICH, and IUK datasets.  For the full RATPAC dataset, which is 
relatively uniformly spatially distributed by design, the agreement degrades when the land-only 
satellite data is used.  We conclude that for these kinds of comparisons, the method used to 
account for spatial sampling is more important that the small changes made between subsequent 
versions of the satellite datasets. 

 
Short Term Trend Analysis in the Extratropics.   
Comments from reviewers of our short-term trend paper caused us to extend our analysis of 

short term trends, originally performed for global and tropical averages, to extratropical averages 
in the Southern (80S to 25S) and Northern hemispheres (25N to 80N).  We found that the 

     
Fig. 4.  Short term trend differences for the Southern Extratropics (82.5 S to 20S for TMT, and 70S to 
20S for TLT).  This spatial subset shows features that are quite different from the other regions, 
especially for the HadAT, RAOBCORE and RICH datasets. These differences may arise because of the 
small number of radiosonde stations in the southern hemisphere.



agreement between radiosondes and satellites is substantially worse in the southern hemisphere.   
This is not surprising, since there are many fewer radiosonde stations in the southern hemisphere 
in all datasets except for RATPAC, which, perhaps not coincidentally, shows the best agreement 
with satellites of all the radiosonde datasets.  In the Northern hemisphere, the agreement between 
radiosondes and satellites is also not very good.  This is more surprising, since the conventional 
wisdom is that many of the NH stations provide high quality data.  Both regional subset confirm 
our earlier conclusions that satellite data is more like satellite data than it is like radiosonde data, 
and the radiosonde datasets are more like each other than they are like satellites.  In our 
submitted paper, we argue that this limits the utility of radiosonde/satellite comparisons for 
unambiguous satellite dataset validation. 

           

 Fig. 5.  Same as Fig. 4 except for the Northern Extratropics (20N – 82.5N).  The general features, such as the 
locations of peaks, are similar. 



 
 
Comparison of Satellite Derived Temperature Datasets with Version 7 SSM/I Total 

Column Water Vapor. 
In Mears et al (2007), we established that it is useful to compare changes in temperature in 

the tropics with changes in oceanic total column water vapor.  Model results, as well as basic 
physics suggest that temperature and water vapor content should be tightly coupled in the 
tropics, where the structure of the atmosphere is governed by convection.  We recently released 
Version 7 of SSM/I, SSMIS, AMSRE, and WindSat microwave imager datasets.  These datasets 
consist of retrievals of total column water vapor, surface wind speed, total cloud water, and rain 
rate.  These parameters are only available over the world’s oceans.  The signals involved in 
retrieving the total column water vapor are large, giving us substantial confidence in the accuracy 
of the water vapor product.  Most temperature datasets closely track the total column water vapor 
in the tropics on short time scales.  On longer scales, the trend comparisons may be used for 
diagnosis of problems in one or more datasets.  In Fig. 6 we show a time series of the ratio of 
trends in water vapor, expressed in percent per decade, to trends in lower tropospheric 
temperature as measured by the MSU/AMSU series of instruments.  The plots are from average 
values averaged over the tropical oceans (20S to 20N).  We plot time series of trends derived 
from each of the TLT datasets, RSS and UAH.  Each point on the time series corresponds to the 
trend calculated from a data subset that begins in January 1988, and ends at the time denoted by 
the x-axis.  Since the plot begins in 2000, the shortest trend represented is 12 years, long enough 
for the trend to begin to stabilize to a final value.  The trend ratio from RSS if fairly constant 
around 7.5% vapor change per K, while the UAH derived trend has substantially larger 
fluctuations, with some trend ratios (e.g for 1988-2002) above 15% percent change in vapor per 
1K change in temperature, well in excess of the expectations of Clausius-Clapeyron and model 
results which suggest the ratio should be around 6 to 7% per K. 

In Figure 7, we show a similar plot, except using the TT product for the tropospheric 
temperature.  The results are similar for UAH and RSS, with the UAH trend ratio showing more 

 
Fig. 6.  Ratios of trends in water vapor to trends in TLT, with the trend for each point on the curve starting 
in Jan. 1988, and ending at the time denoted by the x-axis.  The RSS trend ratio (black) shows less 
variability than the UAH trend ratio (red).



variability.  For TTT, it is also possible to include the ratio time series calculated using the STAR 
satellite temperature dataset, which also shows low variability.  These results suggest that there 
may be significant errors in the UAH datasets on the intermediate time scale. 
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Fig. 7.  Ratios of trends in water vapor to trends in TT, with the trend for each point on the curve 
starting in Jan. 1988, and ending at the time denoted by the x-axis.  The trend ratios calculated using 
RSS data (black) and STAR data (blue) show less variability than the UAH trend ratio (red). 
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Abstract 
 
Multidecadal-scale changes in atmospheric temperature have been measured by both radiosondes 

and the satellite-borne microwave sounding unit (MSU).  Both measurement systems exhibit 

substantial time varying biases that need to removed to the extent possible from the raw data 

before they can be used to assess climate trends.  A number of methods have been developed for 

each measurement system, leading to the creation of several homogenized datasets.  In this work, 

we evaluate the agreement between homogenized MSU and radiosonde datasets on multi-year 

(predominantly 5-year) time scales and find that MSU datasets are often more similar to each 

other than to radiosonde datasets and vice versa.  Furthermore, on these times scales the 

differences between MSU datasets are often not larger than published internal uncertainty 

estimates for the RSS product alone and therefore may not be statistically significant when the 

internal uncertainty in each dataset is taken into account.  Given the data limitations it is 

concluded that using radiosondes to validate multidecadal-scale trends in MSU data, or vice 

versa, or trying to use such metrics alone to pick a 'winner' is an ill-conditioned approach and has 

limited utility without one or more of additional independent measurements, methodological, or 

physical analysis.  

   
  
 



 
1. Introduction 
 
 Multi-decadal changes in global atmospheric temperature have primarily been estimated 

using measurements from two disparate measurement systems, balloon-borne radiosondes 

(beginning in the late 1950's) and satellite-borne microwave sounding instruments.   The 

microwave measurements are constructed by merging together measurements from the 

Microwave Sounding Units (MSUs, late 1978-2005) and the Advanced Microwave Sounding 

Units (AMSUs, mid 1998 to the present).  Hereafter we refer to the merged MSU/AMSU 

datasets as MSU datasets for brevity. Unfortunately, neither MSU nor radiosonde records have 

been designed with absolute calibration and traceability. Numerous changes in instrumentation, 

observing practice, time of observation and various other undesirable measurement aspects 

pervade these records [Thorne et al., 2011a]. A number of techniques to characterize and remove 

these problems have been developed and refined, resulting in a number of “homogenized” 

datasets for each type of data.  Ideally, the resulting methodologically distinct datasets would 

report similar changes in atmospheric temperature during the post-1978 period (the satellite era) 

when both observing systems were in operation. This would yield confidence that data issues had 

been adequately understood and removed leading to a good estimate of the true climate system 

evolution. Unfortunately, this has not been the case, which has led to intense debate about the 

details of recent changes in the Earth's atmospheric temperatures. As the homogenization 

strategies have evolved over time, trends from radiosonde and MSU data have come into 

somewhat better agreement for global-scale averages (although still a substantial error as a 

percentage of the relatively small trend signal), while more substantial discrepancies remain in 

the tropics [Lanzante et al., 2006]. However, overall trend agreement can hide interesting 

differences at shorter timescales and may be a result of largely fortuitous cancellation of 



substantial differences on these shorter timescales.  

In the evaluation of satellite data, particularly in the early part of any mission, it is 

customary to “validate” the satellite data by comparing retrieved geophysical parameters with in 

situ measurements  related to the variable in question.  This is a useful exercise, particularly 

when the principles underlying the remote sensing techniques are still being tested, and when the 

accuracy of the in situ measurements is expected to exceed the accuracy of the satellite-based 

measurements. It is tempting to extend this approach to the evaluation of long-term trends in 

geophysical variables with well-established measurement techniques, such as atmospheric 

sounding. For example, one could use radiosonde/satellite inter-comparison studies to try to 

make determinations of satellite dataset quality.  In fact a number of studies have been used to 

suggest that one of the MSU datasets is more accurate than the others, based on a closer 

agreement with various radiosonde measurements.  Randall and Herman [2008] compared MSU 

measurements with the results from a subset of a single radiosonde dataset and concluded that 

the University of Alabama, Huntsville (UAH) satellite dataset was more accurate than the RSS 

data.  They focused on trends in the dataset differences over 5-year and 10 year periods, but 

focused on a limited analysis period.  Christy et al. [2010] reached a similar conclusion using a 

similar short-term trend analysis, but analyzed only within the deep tropics, and only one time 

period (1989-1995). Christy et al., [2007] used tropical radiosonde measurements (both raw 

soundings and a single homogenized dataset) to argue that the RSS dataset contains a spurious 

warming trend in the tropics during the early 1990s, with the bulk of the analysis of MSU-

radiosonde differences focusing on this period. Conversely, Po-Chedley and Fu [2012] argued 

for a significant discontinuity in the early portion of the UAH record associated with the short 

life-time NOAA-9 satellite. All these papers used a limited number of radiosonde datasets, and 



focused their attention on a limited time period. 

 Over the last decade, there have been numerous other studies that have included inter-

comparisons between MSU and homogenized radiosonde datasets at both global [Haimberger et 

al., 2008; Lanzante et al., 2006; Seidel et al., 2004] and regional scales [Thorne et al., 2007, 

2011b; Titchner et al., 2009].  A recently completed a study of 32-year trends in both MSU and 

homogenized radiosonde data [Mears et al., 2011] serves in part to update such studies to the 

current time.  When the internal uncertainty in the Remote Sensing Systems (RSS) dataset is 

taken into account, the trends in this dataset tend to be consistent with those from homogenized 

radiosonde datasets for the tropospheric channels considered in this paper.  The exception to this 

finding is in the deep tropics, where datasets from RSS and the Center for Satellite Applications 

and Research (STAR) tend to show trends that are high compared to most adjusted radiosonde 

trends. 

 The rest of this paper is structured as follows. Section 2 outlines the overarching 

methodological ethos and approach. Section 3 provides details of the data used in our study.  In  

Section 4, we compare time series of 5- and 10- year trends derived from each dataset for various 

regions, and in Section 5 we investigate the impact of estimates of internal uncertainty on our 

findings.  In Section 6 we revisit the analysis of interlayer differences performed by Randall and 

Herman [2008], and in Section 7 we conclude with a discussion of our findings. 

  

2. Methodological approach and rationale 

The purpose of this paper is to comprehensively investigate the question of whether it is 

appropriate to use MSU/radiosonde intercomparsions as arbiters of MSU dataset quality.  

Arguably this can only be done if two over-arching conditions are both adequately met.  First, 



the radiosonde measurements being considered need to be a sufficiently unbiased representation 

of the true evolution of the climate system.  Second, the results of the comparison need to be 

valid in the statistical sense, given the inevitable uncertainty in both the MSU datasets and 

homogenized radiosonde datasets.   

Several papers, often authored by the developers of the radiosonde datasets themselves, 

have addressed the first question and have mostly concluded that substantial decadal-scale errors 

may remain even in the homogenized data [Lanzante et al., 2003; Randel and Wu, 2006; Titchner 

et al., 2009]. A number of investigators have specifically caveated that it is probable that 

significant residual errors remain in the tropics where the network is sparse and most 

observations are day time only when radiation effects are more important [Randel and Wu, 2006; 

Sherwood et al., 2005; 2008; Titchner et al., 2009].  

For the second question, for both MSU and radiosonde datasets, there are two types of 

important error [Thorne et al., 2005a].  First is the structural uncertainty, which is the uncertainty 

caused by the choice of a single processing method from the set of all possible reasonable 

methods.  This uncertainty can best be characterized by the spread of results from different 

datasets constructed by different research groups. Such an estimate is predicated upon the 

assumptions that all methods are reasonable (peer review being considered a necessary but not 

necessarily adequate condition) and that the very finite number of published estimates provides 

an unbiased estimate of the much larger spread of possible estimates.  Second, there is internal 

uncertainty, unique to each product, that arises from uncertainty in parameters used to perform 

the various adjustments after a processing method is chosen.  In the case of microwave sounders, 

this includes the uncertainty in calibration offsets, and the adjustments for instrument non-

linearity and drifts in local measurement time.  This type of uncertainty can be determined by an 



analysis of the individual uncertainty in each of the adjustment steps used. In Mears et al. [2011], 

we performed such an analysis for the RSS datasets using a Monte-Carlo approach. 

 This paper assesses the issue of robustness of  MSU/radiosonde intercomparisons to 

inevitable uncertainty in radiosonde and MSU records. Specifically, it aims to comprehensively 

address the suitability of such comparisons given the known data limitations. It aims to address 

the following questions and in so doing update the results of the various intercomparisons [e.g. 

Randall and Herman, 2008, Christy et al 2007, 2010] that have specifically looked to assess the 

quality of different MSU products by reference to radiosonde data and datasets: 

1. Impacts of use of only 1 (as has been common), a subset, or all available radiosonde 

datasets 

2. The impacts of different approaches to accounting for sampling mismatches between 

radiosonde and satellite data 

3. The implications of undertaking analyses for limited time periods rather than the whole 

period of record. 

4. What impact recently published comprehensive parametric uncertainty estimates for both 

one MSU and one radiosonde product may have on the results. 

5. The physical interpretation of the difference between MT and LT used in some previous 

studies 

6. Whether updated versions of many of the datasets previously considered impact the 

results and implications of such analyses 

 
3. Datasets used in this study. 

 

We focus our attention on MSU deep-layer diagnostics (and equivalent estimates from 



radiosondes) of the temperature of the atmosphere with the bulk of the signal arising from the 

troposphere. The first MSU product, TMT (Temperature Middle Troposphere) is an average of 

the atmospheric temperature with a weighting function that extends from the surface to the lower 

stratosphere, and peaks about 5 km above the surface.  The second MSU product, TLT 

(Temperature Lower Troposphere) involves a mathematical recombination of several of the off-

nadir view scenes of the TMT channel [c.f. Mears et al., 2011, Fig. 4]. The TLT product has a 

weighting function that peaks much lower, about 2 km above the surface [Mears and Wentz, 

2009a; Spencer and Christy, 1992].   

MSU/AMSU equivalent temperatures have been calculated from the radiosonde data (gridded 

temperatures on standard pressure levels) using a method that assigns weights for each pressure 

level that depend on the surface type (land or ocean), and climatological value of the surface 

pressure for the grid point in each radiosonde dataset, thus taking into account changes due to the 

large differences in surface emissivity, and changes in the total atmospheric transmissivity due to 

changes in total mass of the atmosphere above the radiosonde site. Differences between this 

method and previous approaches, which typically used constant weights, are small for 

multidecadal changes except in regions where the material surface is at high altitude. 

 

3.1. Satellite-based products 
All satellite records considered here are derived from the MSU/AMSU series of microwave 

sounders, which make measurements near a complex of Oxygen absorption lines centered at 60 

GHz [Smith et al., 1979].    For TMT, we consider the most recent versions of the dataset 

constructed by three different groups, the University of Alabama, Huntsville (UAH V5.4) 

[Christy et al., 2003], the Satellite Technology and Research Division at NOAA (STAR 2.0) [Zou 

et al., 2011, 2009; 2006], and Remote Sensing Systems (RSS V3.3) [Mears and Wentz, 2009b; 



2009a].  For TLT, only two versions are available, UAH V5.4 and RSS V3.3. TLT is more 

influenced by radiation emitted by Earth's surface than TMT. Also, the diurnal cycle in surface 

skin temperatures is much larger than that in the free troposphere or even that of the near-surface 

air temperatures. Taken together with the uncertainty introduced through the weighted 

combination of view angles this yields larger uncertainties in TLT than TMT [Mears and Wentz, 

2005; 2009a; Mears et al., 2011]. In all cases the independent groups have applied different 

methods to characterize and remove errors in the raw measurements associated with calibration 

errors and drifting local measurement times.   

 

3.2. Radiosonde based products 

For radiosondes, we take the approach of considering all published homogenized radiosonde 

datasets: HadAT [Thorne et al., 2005b], RAOBCORE [Haimberger, 2007], RICH [Haimberger et 

al., 2008], IUK [Sherwood et al., 2008], and RATPAC [Free et al., 2005; Lanzante et al., 2003]. 

The first four datasets are fully or partially (in the case of HadAT operational version) automated 

methods to find and estimate the size of “breakpoints” in the time series for a radiosonde station 

and create adjusted versions of the radiosonde data.  The version of the RATPAC data used here, 

RATPAC-B, uses a manual breakpoint detection and adjustment method for data from 1958 to 

1997.  After 1997, no further adjustments were made.  We use RATPAC-B because it is a gridded 

dataset, which is required to perform the spatial sampling steps in our analysis.  The companion 

dataset RATPAC-A, contains automated adjustments up to the present time, but is not available 

in gridded form.  We also show results for a subset of the RATPAC dataset (RATPAC_RW) 

which was developed by Randel and Wu [2006] to remove radiosonde stations with the largest 

errors in the stratosphere.  It is not known the extent to which these errors are also present in 



these stations’ tropospheric measurements that are studied here.  The RATPAC_RW subset is 

included here solely because it was the focus of the earlier satellite/radiosonde comparison study 

performed by Randall and Herman [2008].   

3.3   Dataset internal uncertainty estimates 

For the RSS (satellite) and HadAT (radiosonde) products there exist ensembles that 

attempt to quantify the dataset uncertainty [Mears et al., 2011, Titchner et al., 2009, Thorne et al., 

2011b]. Such estimates can help to inform on whether differences between pairs of datasets arise 

through chance choices given the chosen methodological frameworks employed or reflect very 

real and substantial impacts of differences in methodological choices  The MSU error ensembles 

were calculated by combining estimated errors in the adjustments for measurement time drift and 

realizations of the spatial/temporal sampling noise introduced by incomplete sampling [Mears et 

al., 2011].  The resulting error datasets are available at the same spatial and temporal resolution 

as the base dataset.  This makes it possible to construct 400 realizations of this dataset that are 

consistent with the estimated uncertainty by adding them to the baseline, satellite derived 

temperature dataset. The HadAT ensemble used herein are derived from perturbed versions of the 

Hadley Centre’s automated neighbor based homogenization procedure. Here we utilize the 20-

member seasonal ensemble described in [Thorne et al., 2011b] that most closely recreated the 

real climate system behavior across a range of analogs to the real world created by Titchner et al. 

[2009]. Further details on the derivation of these uncertainty products are given in 

Supplementary Information and in the referenced papers.  

We would stress that the radiosonde and MSU data ensembles being considered are 

fundamentally distinct. The Remote Sensing Systems MSU error model [Mears et al., 2011] is a 

perturbed ensemble around an assumption of essentially zero mean bias in the operational 



product version. The radiosonde ensemble makes no assumption about correctness of the 

operational solution but rather undertakes fundamental end-to-end recalculations of the solution 

with a focus solely on breakpoint identification and adjustment issues to create the ensemble.  

Further, the sources of error are distinct for the MSU and radiosonde issues as would be expected 

given that they are fundamentally different observing technologies, each with unique issues. 

Therefore although the error estimates may be presented in a similar manner and may ostensibly 

appear very similar to the reader we would strongly caution against over-interpretation as they 

are not strictly intercomparable. 

 Despite these caveats, it is useful to combine the two error analyses to produce an 

estimate of the expected error in the RSS-HadAT difference time series that we evaluate herein, 

so that the statistical significance in the HadAT-RSS difference time series can be evaluated.  To 

do this we difference pairs selected from the above ensembles to create an ensemble of 

difference time series.  Because there are far fewer HadAT ensemble members available, each 

HadAT ensemble member is paired with 20 different RSS ensemble members, to yield an 

ensemble of 400 possible difference time series.   

 
4. Time Series Comparisons   
 

We begin by comparing the MSU and homogenized radiosonde temperature anomalies time 

series of large spatial scale averages which are useful because of the significant uncertainties in 

the measurements from isolated radiosondes and in single MSU grid points.  Over larger spatial 

scales, many components of these uncertainties are reduced by the averaging procedure.  We 

choose to focus on monthly means, averaged over nearly the entire globe (75S to 75N, “global”), 

or deep tropics (20S to 20N, “tropical”).  In both regions, the radiosonde spatial coverage is far 

from complete.  Figure 1 shows a typical radiosonde sampling pattern.  We also performed our 



analysis for the northern and sounthern extratropics separately.  Summary plots from these 

analyses are presented in the supplementary material. 

A simple (and common) way to construct time series from gridded data is to use area-

weighted means of all available data.  Comparing time series of simple area-weighted (AW) 

global averages of radiosonde data with the area-weighted means of the more spatially complete 

MSU data can lead to substantial discrepancies, due to the large areas that are unsampled by 

radiosondes, and the changes in radiosonde sampling over time.  Additional discrepancies occur 

because the radiosonde sampling patterns in the tropics exclude the eastern tropical Pacific 

Ocean, where the ENSO signal is often the strongest.  A good approach to resolving these issues 

is to sample the MSU data at the actual radiosonde sampling for each month [Free and Seidel, 

2005; Mears and Wentz, 2009b], and then compute an area-weighted average from the sub-

sampled data for each month to produce a “global” average. This modifies the MSU means such 

that they more closely match the area-weighted radiosonde means, and automatically takes into 

account the presence or absence of a radiosonde measurement for a given location and month 

and thus changes in spatial sampling over time.  We refer to the sampled satellite means as 

“sampled at radiosonde locations” (SRL). 

 Because simple AW averages have often been used to perform radiosonde/satellite 

intercomparisons, we show the results for both methods to assess sensitivity to this choice.  In 

Figs. 2a and 2b, we show AW global time series for the operational HadAT product and each 

MSU dataset for both TLT and TMT.  The large month-to-month variations in all datasets make it 

difficult to draw conclusions from this plot.  In Figs. 2c and 2d, we show the AW difference time 

series (HadAT – MSU) for each MSU dataset, and in Figs. 2e and 2f, we show the same 

difference series, except using SRL averaging to calculate the satellite time series.    In all cases 



shown, the SRL time difference time series exhibit much less variance than the AW time series.  

We made similar plots for the other 5 radiosonde datasets we consider (see supplemental on-line 

material).  In all cases, the standard deviations of the difference time series were reduced, 

particularly on short time scales.  Even when the difference time series were filtered to remove 

variability on time scales shorter than one year using a digital filter [Lynch and Huang, 1992], 11 

of 12 TLT cases and 13 of 18 TMT cases showed reduced standard deviation, suggesting that the 

SRL procedure also tends to improve the agreement on interannual and longer time scales.  

These results reinforce our previous conclusion [Mears and Wentz, 2009b] that MSU/radiosonde 

comparisons are best performed using SRL averaging. 

Even with SRL sampling, the difference time series show significant variability on intra-

annual time scales that makes it difficult to draw conclusions.  One approach that has been used 

to help reduce the contribution of short-time scale variability is the analysis of trends in 

intermediate-length sub-samples of a longer time series.  Randall and Herman [2008] used the 

Randel and Wu [2006] subset of the RATPAC radiosondes to analyze 5 and 10 year trends in 

tropopspheric UAH and RSS data.  In Figs. 2g and 2h, we show plots of trends of rolling 5-year 

sub-samples of the difference time series, with each slope plotted at the location of the center of 

the sub-sample.  When the 5-year trend is greater than zero, the MSU data warmed relative to the 

radiosonde data over the 5-year period, and conversely, when the 5-year trend is less than zero, 

the MSU data cooled relative to the radiosonde data.  It is immediately obvious that the 5 or 10-

year trends can accentuate both the intermediate and long time-scale differences, as concluded by 

Randall and Herman.  For example, in the TMT data (Fig. 2f) the MSU data (for all 3 MSU 

datasets) warms relative to HadAT over the 1990-1998 period.  This is easier to see in Fig. 2h as 

large maxima in the short-term trends which reach their greatest magnitude at the center of this 



period. 

In Figs. 3 (and 4), we plot the 5-year trends in global (tropical) difference time series for both 

TLT and TMT and for all combinations of radiosonde and MSU datasets (in the on-line 

supplementary material, we show similar sets of plots for the northern and southern extratropics, 

see Figs S6 and S7).  There are several common features that stand out.  For TLT, perhaps the 

most obvious is a peak in the RSS and UAH minus radiosonde differences centered near 1995 

which is consistently somewhat larger for RSS.  This feature, due to the warming of MSU data 

relative to radiosonde data, has been previously discussed in the literature as it occurs during the 

period where the RSS warms relative to the UAH dataset [Christy and Norris, 2009; Christy et 

al., 2007; Randall and Herman, 2008].  The better agreement between UAH and the radiosondes 

(as shown by the lower peak for UAH) during this period, combined with the sign of temperature 

changes in the tropics during the period surrounding the eruption of Pinatubo, has been used by 

these authors to argue that the RSS dataset contains a warming bias during this period. The 

analysis of this period is complicated by the competing effects of volcano-induced cooling and 

ENSO-induced warming. This is also the period over which general improvements to radiosonde 

solar radiation shielding yielded an apparently artificial cooling across much of the radiosonde 

network [Sherwood et al., 2005], an effect which may not entirely have been removed with 

available radiosonde datasets [e.g. Sherwood et al., 2008]. Hence interpretation of these 

differences is fraught with physical and instrumental considerations that significantly inhibit a 

clean inference regarding which MSU product may be closer to the unknown true temperature 

evolution. 

We note that there are two other prominent features in the 5-year trend plots that have not 

received as much attention.  First, there is a second common feature, a low point centered near 



2003.  This indicates a period when the MSU datasets are cooling relative to the radiosonde 

datasets.  This feature roughly coincides with the end of the data record for NOAA-14, the last 

MSU satellite, and may be related.  We note that for TMT, there is a unexplained trend difference 

between MSU and AMSU measurements during 1999-2005 [Mears et al., 2011]. Second, UAH 

tends to show a peak centered near 1986, which is either absent or much smaller for RSS and 

may be related to calibration problems with the NOAA-9 satellite, a finding confirmed by Po-

Chedley and Fu [2012].  Over the entire time series, the effects of the relative warming in the 

1990's and the relative cooling in the 2000's tend to cancel, leaving the 32-year trends for MSU 

and radiosonde data in relatively good agreement [Mears et al, 2011].   

For the TLT plots (left hand column) in Fig. 3, we also plot the 5 year trend differences for 

RSS-UAH.  Using the mean absolute value of each of the trend difference curves over the entire 

time period in Figure 5a  in all cases except for RAOBCORE and RICH, the MSU datasets are in 

closer agreement with each other than they are with the radiosonde datasets.  (We also evaluated 

the differences using the root-mean square difference as a difference metric, which yielded 

nearly identical results.  See supplemental on-line material, Fig S8.)  Note that the RAOBCORE 

dataset, which has been asserted to be corrupted by anomalous warming due to underlying errors 

in the ERA-40 reanalysis used in its construction, [Christy et al., 2010] is the radiosonde dataset 

that agrees best with both satellite datasets when evaluated using our method. Given that the 

reanalysis field used to derive adjustments in RAOBCORE is strongly influenced by the 

MSU/AMSU data (amongst others) this is perhaps not surprising.  The RICH dataset generally 

agrees second best with the MSU data.  This dataset is more independent from the background 

reanalysis, and thus is less subject to the criticisms put forth in [Christy et al., 2010]. 

The ordering of the level of agreement between the radiosonde datasets and any of the MSU 



datasets (RAOBCORE, RICH, IUK, HadAT, RATPAC) is the same as the ordering of the 

radiosonde trends over the entire satellite era.  If the 5-year trends were strongly influenced by 

the overall trend, this would be expected on mathematical grounds, as the overall trend is related 

to the accumulated 5-year trends.  However, the difference between 5-year trends is dominated 

by differences on short time scales.  We checked this by performing a second set of calculations 

with the overall trend removed from each time series before the 5-year trends were calculated.  

The resulting version of Fig. 5 (see supplemental on-line material, Fig S9) is nearly identical. 

For TMT, we also include data from the STAR MSU dataset. Again, there are several common 

features across all MSU and radiosonde datasets, including the peak in the mid 1990s, and a 

minimum in the mid 2000s.  There is a second sharp minimum centered near 1987 in the UAH 

curve, a feature that is significantly reduced in the RSS data, and almost nonexistent in the STAR 

data.  Also note the appearance of a strong seasonal cycle in the UAH data after 1998. (This 

feature is even more prominent in Fig. 2., and may be related to the method used to combine 

MSU and AMSU measurements.  AMSU measurements began in the middle of 1998).  Again, 

the difference between the MSU datasets and the radiosonde datasets is larger than the spread 

between the MSU datasets themselves, as shown by the mean absolute values of the difference 

curves that are plotted in Fig. 5b. 

     Fig. 4 is analogous to Fig. 3, except the data are averaged over the deep tropics (20S to 20N) 

instead of the entire globe, with summary results presented in Figs. 5c and 5d.  The set of 

tropical plots shares many of the features of the global plots, such as the relative warming in the 

MSU datasets in the mid 1990's, and the relative cooling in the late 1980's and early in the 21st 

century.  One important difference is that there appear to be more differences between the 

radiosonde datasets in the 1990's, with the MSU datasets showing strong warming relative to 



radiosondes in IUK and RATPAC, with considerably less warming relative to RAOBCORE and 

(to a lesser extent) RICH.  For HadAT, most of the relative MSU warming is shifted to a short 

time period in the early 1990's.  It is not surprising that the differences between datasets are 

larger in the tropical case because the number of radiosonde stations in the sample has decreased, 

leading to more variability.  Also, in the tropics, the radiosonde coverage is more sparse that in 

the northern extratropics, making it more difficult to perform the necessary adjustments for those 

methods that rely to some extent upon comparisons with near neighbors (HadAT, IUK, RICH, 

and to a lesser degree, RATPAC). Finally, most tropical sites have had daytime-only ascents 

which are most impacted by solar heating effects and these were significantly mitigated through 

the 1990s [Sherwood et al., 2005, Randel and Wu, 2006] leading to a false cooling signal in the 

raw record, which may not have been entirely removed.  Differences may relate solely to the 

efficacy of the various radiosonde products in removing this artifact and it is important to note 

that the sign and timing implies that possibly none of the radiosonde products have adequately 

removed this artifact rather than a consistent bias in MSU products.  In Fig. 5c (TLT), the best 

agreement between tropical satellite and MSU results is for the RAOBCORE and RICH datasets, 

with the UAH dataset in better agreement than RSS except for the IUK dataset, and in Fig. 5d, 

the best agreement again is with the ROABCORE and RICH datasets, but with the UAH dataset 

typically showing more disagreement than the RSS and STAR datasets.  For TMT, the RSS and 

STAR datasets are extremely close to each other on the 5-year scale, despite substantial 

differences in 32-year trends. 

The results for RATPAC-RW shown here differ from those presented in Randall and Herman 

[2008] for two important reasons.  First, newer versions of the both the RSS and UAH MSU 

datasets were used in this analysis.  Second, and more importantly, Randall and Herman did not 



subsample the MSU data at the radiosonde locations, but instead compared global radiosonde 

averages to area-weighted, land-only MSU averages.  A majority (29 of 47) of the RATPAC-RW 

stations are located on islands (9 stations) or in coastal regions (20 stations) and thus are not 

representative of a land-only average (see supplementary material for a map showing these 

results, and a precise description of our definition of land, coastal, or ocean).   

Despite extensive efforts we were unable to exactly replicate the results of Randall and 

Herman due to insufficient methodological clarity in their paper and thus no direct comparison is 

possible here.  To illustrate the relative importance of variations in sampling method and dataset 

updates, we present several alternative versions of Fig. 5b in the supplementary material (see Fig 

S10).  We find that the changes in dataset version are less important than changes in sampling 

method, and that while the use on land-only MSU data reduces the mean absolute difference 

relative to the use of global land-and-ocean averages, both are substantially worse than sampling 

at the radiosonde locations.  

Another question to investigate is the degree to which agreement on the 5-year time scale is 

useful for predicting agreement on a longer time scale.  In Fig. 6, we plot the absolute value of 

the difference between multi-decadal trends in globally-average TMT (1979-2010, except for 

IUK, which ends in 2006) as a function of the mean absolute value of each of the trend 

difference curves.  This measure of 5-year trend agreement is the same as is plotted in Fig. 5.  

The plot shows very little correlation (correlation coefficient = 0.025) between the level of 

agreement on 5 year time scales, and the agreement between multi-decadal trends. This suggests 

that the agreement between 5 year trend time series is essentially useless for predicting 

agreement on longer time scales. 

 



5.  Impact of Uncertainty Estimates. 

 
The preceding section serves as an estimate of the structural (or between method) uncertainty 

in MSU/radiosonde comparisons.  We now investigate the impact of internal uncertainty on both 

the MSU and radiosonde datasets.  Errors in both types of dataset are often correlated in both 

time and location.  Only the RSS and HadAT datasets have associated internal uncertainty 

estimates that are sufficiently detailed to accurately estimate the error in trends at various time 

scales (Section 2.3). 

For the RSS/HadAT case, in Fig. 7a and 7b, we show the median difference between 5-year 

RSS - HadAT difference trend error ensemble (we emphasize that the median of the HadAT error 

ensemble is quite different from the operational version of HadAT considered in Section 3).  We 

also plot the 95% confidence interval (CI) around the median difference.   The 95% confidence 

interval was calculated from an ensemble of 400 realizations of the RSS-HadAT difference.  The 

nth member of this ensemble was constructed by subtracting the (n modulo 20)th member of the 

HadAT ensemble from the nth member of the RSS ensemble.    For both TLT and TMT, the 

95% CI range for the differences between RSS and HadAT encompasses the zero line 59% of the 

time, implying that the differences between the 5-year trends are larger than can be easily 

accounted for by the combination of internal errors.  We note that the HadAT adjustment 

procedure was not designed to remove errors on short time scales, so that the short-term error 

represented by the ensemble may underestimate the true error in the radiosonde data.     

Figs 8a-c summarize a similar analysis of the differences between the RSS and UAH satellite 

datasets (8a and 8b), and between the RSS and STAR satellite datasets (8c).  Because detailed 

uncertainty ensembles are not available for the UAH and STAR datasets, this part of the analysis 

only includes uncertainty estimates for the RSS datasets.  For TLT, the RSS-UAH 95% 



uncertainty range encompasses the zero line 63% of the time, and for TMT the uncertainty 

ranges encompass the zero line  for 30% (UAH) and 62% (STAR) of the time period.  We 

speculate that if the uncertainty in the UAH and STAR datasets were included, these percentages 

would increase, but the exact amount is difficult to reliably estimate without comparably 

comprehensive uncertainty analyses from the UAH and STAR groups. 

  

6. Inter-channel Differences. 

 
Randall and Herman (2008) (hereafter RH2008) also studied the differential trends between 

the TLT and TMT layers for the UAH, RSS, and RATPAC-RW datasets.  They motivated this 

work as a method for diagnosing the impact of the diurnal cycle on the merged dataset, since the 

adjustments made for changes in local measurement time are much larger for TLT than TMT.  

We recommend using such differences with caution. Because of the overlap between the TLT 

and TMT weighting functions and the subsequent cancellation caused by differencing, the TLT – 

TMT difference contains a large amount of information from the surface and lower stratosphere. 

Furthermore, a large portion of the resulting weighting kernel (including most if not all of the 

atmosphere above 6Km) has a negative weighting which is hard to interpret in a physical 

manner. Figure 9 shows the temperature weighting functions for TLT, TMT, and the TLT – TMT 

difference.  About 12% of the total absolute value of the weight comes from surface emissions, 

and about 25% comes from above 12 km, or 200 hPa. We stress that these differences should not 

be thought of as the difference in temperature between the lower and middle troposphere. This is 

particularly a concern for radiosonde data because of the increase in the relative weight of 

radiosonde measurements at pressures ≤ 200 hPa where the adjusted radiosonde datasets may be 

less reliable [Randel and Wu, 2006].   



With these caveats in mind, here we update (to the extent we are able to replicate) and extend 

the RH2008 analysis.  There are 4 important differences between the present analysis and 

RH2008.  First, we use the most recent versions of the available datasets.  Second, we consider 

all available homogenized radiosonde datasets (Section 2.2) rather than a single estimate.  Third, 

we use SRL averaged MSU data instead of land-only area-weighted data (Section 3).  And 

fourth, we consider results from outside the limited temporal ranges plotted in RH2008.  Figure 

10 shows the 5-year and 10-year trend differences between TLT and TMT for each radiosonde 

dataset.  In each case, the SRL MSU averages are plotted, which accounts for the difference in 

the RSS and UAH curves between plots.  These plots correspond to Fig. 4 in RH2008, which 

they used to argue that the UAH satellite datasets were more accurate than the RSS versions.  

The bottom row of plots show results from the RATPAC-RW dataset analyzed by RH2008.  In 

Table 1, we present a summary of the mean absolute differences (MAD) and the number of 

months that each satellite dataset is closer to the radiosonde data set.  For the 5-year trends, the 3 

datasets are in reasonably good agreement over the bulk of the time period, in agreement with 

the findings of RH2008, though in general, we find that the RSS data are in better agreement 

with the radiosonde data than the UAH data for these metrics (Table 1).  For the 10 year time 

period, we find that the largest differences are outside the region plotted by RH2008, and that 

within the 1993-2002 period plotted, the RSS dataset is in better agreement with the radiosonde 

data than UAH, in direct contradiction to the findings of RH2008.  The probable reasons for this 

different result are both the use of MSU data sampled at the radiosonde locations (instead of 

land-averaged satellite data), and (to a lesser degree) the use of updated versions of the MSU 

datasets.  The largest differences between the MSU datasets and radiosonde datasets tend to 

occur in the early part of the time series for both the 5-year and 10-year trends, outside the region 



plotted in RH2008.  Again, we find that the two MSU datasets tend to be closer to each other 

than to any of the radiosonde datasets. 

  For the other 5-year period plots, the conclusions are similar to that reached above for the 

RATPAC-RW data.  The MSU datasets are in fairly good agreement with the radiosonde datasets 

during the period plotted in RH2008.  During the pre-1990 period the analyses typically show 

TLT warming relative to TMT more in the radiosonde data than in the MSU datasets, with the 

MSU datasets being relatively similar.  For the 10 year time period plots, this difference becomes 

more important, with TLT warming much more than TMT in the radiosonde datasets.  During the 

1993-2002 period plotted in RH2008, the results differ substantially from radiosonde dataset to 

radisonde dataset, even for the MSU dataset SRL estimates, which makes it difficult to draw 

conclusions.  Note that the only difference between the different versions of the MSU data is the 

spatial/temporal sampling used to construct the averages.  After about 2000, TLT tends to warm 

relative to TMT more in the radiosonde datasets, except for HadAT, where TLT cools slightly 

relative to TMT after about 2004. 

An improvement that can be made to the RH2008 method is to consider the difference 

between TLT and the “total troposphere” (TT) MSU product proposed by Fu and Johanson 

[2005].  This product has reduced weight in the stratosphere, and thus is less affected by overall 

stratospheric cooling, and stratospheric warming events caused by volcanic eruptions.  In the 

supplementary material, we show an alternative version of Fig. 10 calculated using TT instead of 

TMT.  This replacement generally reduces the variability of the time series, probably due to the 

reduction of the influence of volcano-induced stratospheric warming, but does not alter the 

conclusions. 

 



7. Discussion 
 

We have used methods similar to those presented in RH2008 to analyze 5- and 10-year trends 

in adjusted radiosonde and Microwave Sounding Unit (MSU) measurements of tropospheric 

temperature utilizing an inclusive range of MSU and radiosonde products.  In all cases we find 

that there are several time periods during which there is substantial disagreement between 5-year 

trends in radiosonde datasets and 5-year trends in the MSU datasets.  Sometimes these 

differences cancel over longer time periods, perhaps leading to false or overly confident 

conclusions about the agreement between satellite and radiosonde datasets on multi-decadal time 

scales.  When data from different MSU – radiosonde pairs are examined, the results indicate that 

all MSU/sonde differences share many common features, and that in most cases, the differences 

between radiosondes and MSU is much larger than between different MSU datasets, or between 

different radiosonde datasets.  Given the current state of knowledge, we are unable to determine 

whether this commonality is due to shared problems in the MSU datasets, or to shared problems 

with the radiosonde datasets, or a combination of both.  It is possible that both types of datasets 

retain substantial common biases within their respective types.  For MSU data the three different 

versions are derived from identical raw source data.  If there is a time-dependent bias in the raw 

data that none of the merging procedures are able to detect and remove, then the common bias 

would obviously remain in all three datasets.  A similar argument holds for the radiosonde 

datasets, though in this case, the underlying, unadjusted datasets differ in the number and 

locations of radiosonde stations used.   

In addition, an analysis of the internal error in the MSU datasets suggests that the differences 

between RSS and UAH 5-year trends are possibly not statistically significant for TLT, while the 

differences between the RSS, STAR and UAH datasets may be significant for TMT.  This type of 



analysis is hampered by the lack of a detailed error analysis in the UAH and STAR products. 

Although radiosonde MSU comparisons have some information content, on their own they 

are ill-posed to assess satellite dataset quality issues because both types of data almost certainly 

retain unknown and poorly quantified biases. Additional entirely independent measurements 

such as from the Hyperspectral Infrared Sounder, GPS Radio Occultation or reanalyses may 

help. But these are additionally fraught by a variety of issues relating to sampling (clear sky only 

for HIRS, a different atmospheric volume and temporal samples of opportunity for GPS-RO), 

interpretation (both satellite measures are responsive to more than just temperatures), period of 

record, and independence of record (particularly so for reanalyses). Despite this, bringing in such 

additional independent estimates may offer a future avenue of investigation. Additional insights 

may accrue from physical rather than wholly statistical interpretation of the records. Finally, real 

insights on biases and their causes will only accrue through additional in-depth analyses of the 

observations and accompanying metadata themselves to better understand the causes of biases 

and differences in the respective records. 

In conclusion, when the similarity of the MSU datasets relative to radiosonde datasets is 

combined with the lack of statistical significance in many of the difference findings, we conclude 

that trying to determine which MSU dataset is “better” based on short-time period comparisons 

with radiosonde datasets alone cannot lead to robust conclusions. This is trivially true for any 

case where two poorly constrained and understood measurements of the same measurand exist. 

When they disagree the problem is under-constrained such that it is solely possible to conclude 

that one or both of the measurements is (are) biased relative to the true state of the measurand. 

Sadly, this is all too common in climate and is why SI traceable measurement programs such as 

the GCOS Reference Upper Air Network [Seidel et al., 2009] are vital to our future ability to 



monitor the changing climate. 
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Figure Captions: 
 
 



Fig. 1.  Sampling pattern for the HadAT dataset for January, 2003.  Grey boxes represent 

locations of valid data (5 degree latitude by 10 degree longitude gridboxes with at least one 

reporting radiosonde station for the month), and white regions are areas where data is not 

available. 

Fig. 2.  Graphical representation of various stages in processing the radiosonde and satellite data.  

The left column is TLT data, and the right side is TMT.  The top row (a and b) shows unmodified 

globally average time series for the HadAT radiosonde dataset, and each of the satellite datasets.  

The second row (c and d) shows the difference between HadAT and each of the satellite datasets 

(satellite - HadAT) using area-weighted averaging.  The third row (e and f) shows the difference 

between HadAT and each of the satellites datasets using SRL averaging for the satellite data.  

Note the large reduction of differences on most time scales.  The bottom row (g and h) shows 5-

year trends calculated from the SRL differences on the row above. 

 
Fig. 3.  Difference in global SRL-averaged 5-year trends (Satellite – Radiosonde) for each 

radiosonde and satellite dataset.  The left column is for the TLT channel, and the right is for 

TMT.  For TLT, we also plot the SRL difference between the two satellite datasets (UAH – RSS). 

 

Fig.4.  Same as Fig.3, except that the data are averaged over radiosonde locations in the deep 

tropics (20S-20N).  Similar sets of plots for the southern and northern extratropics are available 

in the supplemental material (Figs. S6 and S7.) 

 

Fig. 5.  Summary of the differences between 5-year trends using the mean absolute difference as 

a metric.  5a. TLT, global. 5b. TMT, global. 5c. TLT, deep tropics (20S-20N).  5d. TMT, deep 

tropics.  In most cases, the difference between different satellite datasets is substantially less than 



the difference between the satellite datasets and the radiosonde datasets.  The exception to this is 

for the RAOBCORE and RICH datasets for TLT. 

 

Fig. 6.   Scatter plot of the absolute value of the 32-year trend difference (1979-2010) in global 

means of TMT as a function of mean absolute deviation of the 5-year trend difference time series 

computed from the same difference time series.  Each point represents the comparison of one 

dataset (satellite or radiosonde) with another (satellite or radiosonde).  

 

Fig. 7.  Differences between 5 year trends with uncertainty estimates for channels TLT and TMT.  

All time series and uncertainty estimates are global averages sampled at the location of HadAT 

radiosonde measurements (which end in 2003 in this ensemble and hence the series truncation).  

The thick black line is the median difference time series, and the yellow region surrounding it 

contains 95% of the instances in the uncertainty ensemble.  The  uncertainty ensemble includes 

the estimated uncertainty in both the RSS  and HadAT datasets.   

 

Fig. 8.  Differences between 5 year MSU trends with RSS-only uncertainty estimates for 

channels TLT and TMT.  a) RSS-UAH for TLT.  b) RSS-UAH for TMT, c) RSS-STAR for TMT.  

In all panels, the thick black line is the median difference time series, and the yellow region 

surrounding it contains 95% of the instances in the RSS uncertainty ensemble.  

 
Fig. 9.  Weighting functions as a function of height for TLT, TMT, and the TLT minus TMT 

difference for ocean scenes.  The rectangular areas located below zero height show the portion of 

the total weight due to surface emission.  For land scenes, this contribution would be about two 

times larger, with a corresponding reduction in atmospheric weight.  Because of the large 



absolute weight in the stratosphere and the surface, the TLT minus TMT difference should not be 

interpreted as the difference between the lower and middle tropospheric temperatures. 

 
Fig. 10.  Differences (TLT minus TMT) in short term trends in atmospheric temperature between 

adjacent layers for each radiosonde dataset.  In each case, the satellite data is sampled at the 

radiosonde locations, and the differences in spatial sampling lead to the differences between the 

satellite results for the different panels.  The temporal range plotted in RH2008 is shaded in 

yellow. 

 



Table 1.  Interlayer Difference Statistics for 5 and 10 year trends. 
 
 5-year Trend Differences 10-year Trend Differences 
 Number 

of Months 
RSS 
Closer 

Number 
of Months 
UAH 
Closer 

MAD  
RSS-Sonde 
(k/decade) 

MAD  
UAH-Sonde 
(K/decade) 

Number 
of Months 
RSS 
Closer 

Number 
of Months 
UAH 
Closer 

MAD  
RSS-Sonde 
(k/decade) 

MAD  
UAH-Sonde 
(k/decade) 

   HadAT 218 109 0.1006 0.1511 210  57 0.0628 0.0791 
RAOBCORE 205 122 0.0745 0.1266 172  95 0.0505 0.0847 
    RICH 222 105 0.0597 0.1219 202  65 0.0291 0.0793 
     IUK 178  89 0.0647 0.1289 150  57 0.0373 0.0794 
  RATPAC 217  99 0.0741 0.0984 205  51 0.0339 0.0670 
RATPAC_RW 215 101 0.0930 0.1009 174  82 0.0456 0.0690 
 





 

 

Fig. 1.  Sampling pattern for the HadAT dataset for January, 2003.  Grey boxes represent 

locations of valid data (5 degree latitude by 10 degree longitude gridboxes with at least 

one reporting radiosonde station for the month), and white regions are areas where data is 

not available. 

 

 



 

 
Fig. 2.  Graphical representation of various stages in processing the radiosonde and satellite 

data.  The left column is TLT data, and the right side is TMT.  The top row (a and b) shows 

unmodified globally average time series for the HadAT radiosonde dataset, and each of the 

satellite datasets.  The second row (c and d) shows the difference between HadAT and each of 

the satellite datasets (satellite - HadAT) using area-weighted averaging.  The third row (e and 

f) shows the difference between HadAT and each of the satellites datasets using SRL 

averaging for the satellite data.  Note the large reduction of differences on most time scales.  

The bottom row (g and h) shows 5-year trends calculated from the SRL differences on the 

row above. 

 



 
 



 

 
 
Fig. 3.  Difference in global SRL-averaged 5-year trends (Satellite – Radiosonde) for each 

radiosonde and satellite dataset.  The left column is for the TLT channel, and the right is for 

TMT.  For TLT, we also plot the SRL difference between the two satellite datasets (UAH – RSS). 

 
 



 



 

 
 
Fig.4.  Same as Fig.3, except that the data are averaged over radiosonde locations in the deep 

tropics (20S-20N).  Similar sets of plots for the southern and northern extratropics are available 

in the supplemental material (Figs. S6 and S7.) 



 

 
 
 
Figure 5.  Summary of the differences between 5-year trends using the mean absolute 

difference as a metric.  5a. TLT, global. 5b. TMT, global. 5c. TLT, deep tropics (20S-20N).  5d. 

TMT, deep tropics.  In most cases, the difference between different satellite datasets is 

substantially less than the difference between the satellite datasets and the radiosonde datasets.  

The exception to this is for the RAOBCORE and RICH datasets for TLT. 

 

 



 

 

 

Figure 6.   Scatter plot of the absolute value of the 32-year trend difference (1979-2010) in global 

means of TMT as a function of mean absolute deviation of the 5-year trend difference time series 

computed from the same difference time series.  Each point represents the comparison of one 

dataset (satellite or radiosonde) with another (satellite or radiosonde).  



 

 
 
 
Fig. 7.  Differences between 5 year trends with uncertainty estimates for channels TLT and 

TMT.  All time series and uncertainty estimates are global averages sampled at the location of 

HadAT radiosonde measurements (which end in 2003 in this ensemble and hence the series 

truncation).  The thick black line is the median difference time series, and the yellow region 

surrounding it contains 95% of the instances in the uncertainty ensemble.  The  uncertainty 

ensemble includes the estimated uncertainty in both the RSS  and HadAT datasets.   

 



 

 
 

Fig. 8.  Differences between 5 year MSU trends with RSS-only uncertainty estimates for 

channels TLT and TMT.  a) RSS-UAH for TLT.  b) RSS-UAH for TMT, c) RSS-STAR for TMT.  

In all panels, the thick black line is the median difference time series, and the yellow region 

surrounding it contains 95% of the instances in the RSS uncertainty ensemble.  



 

 
 
Fig. 9.  Weighting functions as a function of height for TLT, TMT, and the TLT minus TMT 

difference for ocean scenes.  The rectangular areas located below zero height show the portion of 

the total weight due to surface emission.  For land scenes, this contribution would be about two 

times larger, with a corresponding reduction in atmospheric weight.  Because of the large 

absolute weight in the stratosphere and the surface, the TLT minus TMT difference should not be 

interpreted as the difference between the lower and middle tropospheric temperatures. 



 

 
Fig. 10.  Differences (TLT minus TMT) in short term trends in atmospheric temperature between 

adjacent layers for each radiosonde dataset.  In each case, the satellite data is sampled at the 

radiosonde locations, and the differences in spatial sampling lead to the differences between the 

satellite results for the different panels.  The temporal range plotted in RH2008 is shaded in 

yellow. 





Supplementary Material 

Additional details on the creation of the RSS and HadAT ensembles 

 We have recently calculated a set of 400 monte-carlo realizations of possible error for 

each channel of the RSS dataset [Mears et al., 2011].  The resulting error datasets are available at 

the same spatial and temporal resolution as the base dataset.  This makes it possible to construct 

400 realizations of this dataset that are consistent with the estimated uncertainty by adding them 

to the baseline, satellite derived temperature dataset.  The error model is a full end-to-end 

reprocessing which permits interdependencies in uncertainties between successive steps of the 

processing chain to be fully expressed. The sources of input error included two sources of error.  

The first source is the sampling error caused by incomplete temporal sampling of any given 

gridpoint over a month, caused by gaps between the swaths measured by the satellite on a given 

day.  This error was estimated by sampling the output from a climate model (CCM3) using the 

actual sampling times from a MSU or AMSU satellite, and comparing these results to the true 

monthly average.  The second source of error is due to a possible error in the model-based 

adjustments made for changes in local measurement time.  These were estimated by evaluating 

the range of results that arise when different linear combinations of the measurement time 

adjustments calculated from different, structurally distinct, climate-model based estimates of the 

diurnal cycle were used.  These errors, combined with finite sample sizes, lead to uncertainty in 

the merging parameters (offsets and calibration adjustments that depend on the temperature of 

the warm calibration target) used to adjust the various satellites before they are merged together.  

Sampling errors were found to dominate at small distance and time scales but rapidly diminish 

for large area averages or longer term changes. On long timescales diurnal cycle correction 

offsets (particularly for TLT) and inter-satellite offset adjustments were the dominant sources of 



uncertainty.   

 The HadAT ensemble used herein are derived from perturbed versions of the Hadley 

Centre’s automated neighbor based homogenization procedure.  The method involves creation of 

neighbor composites for each station.  Breakpoints for each station are indentified using 

knowledge of metadata events (known to be grossly incomplete) and a statistical test performed 

on the station-minus-neighbor time series.  At these breakpoints, adjustments are applied based 

on the target-minus-neighbor series.  The procedure is iterative with early iterations designed to 

ascertain the most obvious breaks and the breakpoint detection threshold being relaxed with each 

iteration. It has no convergence requirement. For full methodology details see Thorne et al 

[2005] and McCarthy et al. [2008].   

 The algorithm was originally run on seasonal resolution data with substantial human 

intervention to confirm breakpoint locations and adjustments to create HadAT [Thorne et al., 

2005]. It was then subsequently automated and all obvious subjective methodological choices 

were made tunable parameters to create an ensemble of potential solutions [McCarthy et al., 

2008]. To assess the veracity of the approach, a set of analogs to the real world data with known 

error characteristics were created.  This was done by sub-setting output from an AGCM (forced 

with observed SSTs and historical 20th Century forcing agents) to the observational datamask 

and adding four distinct error structures to approximate plausible real-world errors [Titchner et 

al., 2009]. Then, a set of more substantial methodological perturbations including substantially 

different input data resolution, neighbor calculation approaches and a whole new adjustment 

approach were considered [Thorne et al., 2011]. As a final step this analysis recombined a small 

number of the resulting ensembles under a conditional probability paradigm to yield estimates of 

trend changes over the longest timescales.   



 This yields a very substantial set of information which could be used herein. In deciding 

which data to use we were guided by the need to consider data at the grid box level and for 

relatively short time periods. The most consistent ensemble in recapturing, in an unbiased 

manner, the ‘truth’ in the analogs for several regions and trend periods was the twenty-member 

monthly resolution ensemble [Thorne et al., 2011]. In particular, during the satellite era tropical 

trends in the analog worlds it performed very well (see Figure 6 in Thorne et al. [2011]). 

Although this is far from an absolute guarantee that the ensemble will be unbiased it likely 

constitutes the best approximation to an unbiased estimator of the true climate evolution from the 

entire available population of HadAT automated approaches. It also very likely will be a better 

estimator than the original manually produced HadAT dataset, at least in terms of giving a 

realistic spread to reflect the real degree of ignorance at smaller time and space scales into the 

real evolution of the radiosonde record.  

 

Additional Versions of Figure 2 for other radiosonde datasets.   

Figures S1 through S5 show versions of Fig. 2 calculated using the RAOBCORE, RICH, IUK, 

RATPAC, and RATPAC_RW datasets. 

 



 
Figure S1.  Same as Fig. 2 from the text, calculated using the RAOBCORE dataset instead of the 

HadAT dataset. 

 

 



 

 

Figure S2.  Same as Fig. 2 from the text, calculated using the RICH dataset instead of the HadAT 

dataset. 

 

 



 

 

Figure S3.  Same as Fig. 2 from the text, calculated using the IUK dataset instead of the HadAT 

dataset. 

 

 



 

 

Figure S4.  Same as Fig. 2 from the text, calculated using the RATPAC dataset instead of the 

HadAT dataset. 

 

 



 

 

Figure S5.  Same as Fig. 2 from the text, calculated using the RATPAC_RW dataset instead of 

the HadAT dataset. 

 

 

 



                                            

Fig. S6.  Same as Fig.4 from the main text, except for the Southern Extratropics (82.5 S to 20S 

for TMT, and 70S to 20S for TLT).  This spatial subset shows features that are quite different 

from the other regions, especially for the HadAT, RAOBCORE and RICH datasets.  These 

differences may arise because of the small number of radiosonde stations in the southern 

hemisphere. 



                                             

Fig. S7.  Same as Fig. 4 from the main text, except for the Northern Extratropics (20N – 82.5N).  

The general features, such as the locations of peaks, are similar. 



 

 

 

Fig. S8.  Same as Fig. 5 in the main text, except calculated using the root-mean-square of the 

trends in the difference time series instead of the mean absolute value.  The relative magnitudes 

of the trend differences are unchanged, showing the insensitivity of the results to metric chosen. 

 

Fig. S9.  Same as panels a and b of Fig. 5 in the main text, except that the overall linear trend 

was removed from each difference time series before the analysis was performed.  The results 



are essentially unchanged, showing that the 5-year trend differences are dominated by short-term 

behavior. 

 

 

 

Fig. S10.  This figure is multiple versions of panel b of Fig 5 in the main text, which shows the 

mean absolute difference between 5 year trend time series.  a) Reproduced from Fig5b, with SRL 

sampling and updated satellite datasets.  For the updated MSU data, the period of analysis is 

1979-2011.   

b) Same as panel a, except calculated using previous versions of the RSS (V3.0) and UAH 

(V5.1) datasets.  The STAR dataset is the same.  For this plot, the period of analysis is 1979-

2007, so any changes in the STAR results are due to the change in analysis period.  c) Same as 

panel b, except that area-weighted averaging was used to construct the global averages.  d).  



Same as panel d, except than land-only area weighted averages were used for the MSU dataset.  

For RSS, the update from version 3.0 to 3.3 reduced the mean absolute difference values slightly.  

Using area-weighted averaging (no sampling at radiosonde locations) reduced the mean absolute 

difference between MSU datasets, and greatly increases the mean absolute difference between 

MSU and radiosonde datasets, with the exception of the RATPAC dataset, which was carefully 

constructed to represent a global average.  Moving to a land-only area-weighted average reduces 

the mean absolute differences, but they are still substantially larger than those in panel a or b. 



 

 

Fig. S11.  Same as Figure 10 in the main text, except calculated using the TT (Total Troposphere) 

product defined in Fu and Johansan (2005) to be 1.1*TMT -0.1*TLS.  This weighted 

combination of channels reduces the contribution of the stratosphere relative to TMT.  The use of 

TT changes the time series considerably, and in general the variability of the time series is 



reduced, probably due to the reduction of the influence of volcano-induced stratospheric 

warming.  The overall conclusions drawn from Fig 10 are unaltered, with some of the largest 

discrepancies occurring outside the range considered by RH2008, and RSS being in better 

agreement with all radiosonde datasets.   

 

 Definition of radiosonde stations as land, ocean, or coastal. 

In section 3, we argue that most of the stations considered by Randall and Wu are in either 

coastal or oceanic locations:  To define ocean, coastal, and land we use a gridded land-fraction 

dataset on the same 2.5 x 2.5 degree spatial scale as the gridded MSU/AMSU data.  If the MSU 

gridpoint that contains the station is less than 30% land, the station is classified as ocean.  If not, 

then we examine a 3x3 subset of the MSU gridpoints that surround the station.  If any of these 

cells have a land fraction that is less than 0.75, then the station is considered to be coastal.  If not, 

then it is considered to be land.  One station, ROSTOV-ON-DONU, lat = 47.250, lon = 39.820), 

which our algorithm evaluated to be coastal due to its location on the shores of the Black Sea, 

was set to land manually because it is surrounded on three sides by land.   

 



 
 
Fig. S11.  Map of RATPAC -RW stations, color-coded by surface classification. 
 
 
 
 

 
Table S1.  Number of RATPAC-RW stations assigned to each surface type. 

Location Type Number of Stations 
Open Ocean 9 
Coastal 20 
Dry Land 18 

 
 
Thus we conclude that only 18 of 47 (less than 40%) the RATPAC-RW stations are truly on dry 

land locations, making the choice of using land-only MSU/AMSU data for comparison purposes 

a questionable choice.  Coastal locations typically do not exhibit true dry land climatology.  For 

example, these coastal locations show significantly less diurnal variability than dry land 

locations.  For TMT, the amplitude of the diurnal cycle (Mears et al., 2009a, 2009b) used to 

adjust the MSU/AMSU data is more than 55% larger for an all-land average than for an average 

over the RW locations, and the part consisting of only even harmonics (the part that dominates 



the diurnal adjustment of MSU/AMSU data) is more than 65% larger.   
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