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Introduction. 
 
The work for this award is focused on the following areas. 
 

1. Continued production of Climate Data Records (CDRs) from available 
microwave sounders. 

2. Investigation and removal of any calibration problems that develop in the dataset. 
3. Development of CDRs from new instruments that are suitable for merging with 

the earlier data. 
4. Validation of CDRs using adjusted radiosonde and radio occultation 

measurements. 
5. Development of comprehensive error estimates for each data product. 
6. Software engineering to improve the reliability, transparency, and efficiency of 

our data processing system.  The end result would be a processing system suitable 
for converting to operational status. 
 

We have made progress in many of these areas.  Work in each area is discussed in the 
sections below. 
 
1.  Continued production of CDRs from the available microwave sounders. 
 

We update the merged MSU/AMSU datasets for TLT, TMT, TTS, and TLS each 
month.  The data are made available to the research community via our website 
(www.remss.com/msu).  This year, the data will be included in several chapters of the 
State of the Climate Report, published in the Bulletin of the American Meteorological 
Society (BAMS). 
 
2.  Investigation and removal of any calibration problems that develop in the dataset 
 

We continue to monitor data from all operational AMSU instruments for new 
calibration problems.   
 
 
 

http://www.remss.com/msu�
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3. Development of CDRs that include data from new instruments. 
 

We have completed calibration studies that allow us to include data from the AMSU 
instruments in AQUA, NOAA-18, METOP-A, and NOAA-19 in our merged datasets.  
We have completed merging the results from these satellites into the existing 
MSU/AMSU data and this new version is now ready for release.  The new version 
(Version 3.3) will be released to the scientific community for the May 2010 update.   

Version 3.3 is very similar to version 3.2, which only included data from the NOAA-
15 satellite.  In Fig. 1, we show globally averaged time series for 1979-2008 for versions 
3.2 and 3.3 for each channel.  The addition of the additional satellites only makes very 
small changes in the globally averaged temperature trends.  Small changes in the monthly 
temperatures can be seen after mid 2002, when data from AQUA begins to be included. 

 

 
 

 
 

Figure 1.  Time series of globally averaged temperature of each CDR.  Version 3.2 is 
the current version that only includes data from NOAA-15.  Version 3.3 will be 
released on May 1, 2010, and includes data from AQUA, NOAA-18, METOP-A and 
NOAA-19.  The addition of the new satellites only makes small changes to the time 
series, as can be seen in the difference time series shown in red, offset by 1.0. 

 
The fact that only small changes occur when the additional satellites are included is 

very encouraging.  On smaller spatial scales, the differences can be larger.  In Figure 2, 
we show a map of the difference in trends (1979-2008) for TLS between version 3.2 and 
version 3.3. 
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Figure 2.  Trend difference V3.2 minus V3.3 for TLS. 
 
4.  Validation of CDRs using radiosonde and GPS RO measurements of atmospheric 
temperature. 
 

 
Figure 3.  Two typical GPS-RO temperature soundings from the CHAMP 
instrument. The black curve is a tropical sounding, and the blue curve is from 
near the north pole. 
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During the past year, we have focused our comparison effort on comparing 
MSU/AMSU data with in situ data on GPS RO measurements from the CHAMP 
(Wickert et al., 2001) and COSMIC (Rocken et al., 2010)programs.  Previous 
intercomparisons have used monthly averaged data(Ho et al., 2007), which contains 
considerable sampling noise due to the relative sparse sampling for the GPS RO data.  
We have downloaded all available GPS RO atmospheric temperature soundings from 
these programs.  We then process each sounding to generate MSU and AMSU equivalent 
brightness temperatures (Tb’s) for MSU channel 4 and AMSU channel 9.  In Fig. 3, we 
show two typical soundings from CHAMP, one from the tropics, and one near the poles.  
In the tropics, data below about 10 km is affected by the presence of water vapor.  Near 
the poles, the valid temperature data extends much lower in the atmosphere.  In both 
regions, the valid data extends low enough to calculate an accurate equivalent 
temperature for MSU channel 4 or AMSU channel 9.   

A 

 
 

B 

 
Fig. 4.  A) All CHAMP soundings for January 1, 2004 (177 soundings).  AMSU 
9 equivalent brightness temperatures calculated from each soundings are 
shown by the color.  B) Those soundings that occurred within 3 hours of the 
NOAA-15 AMSU channel 9 measurement (74 soundings).  The difference 
between the AMSU measurement and the equivalent AMSU 9 brightness 
temperature calculated from the CHAMP soundings are shown by the color. 
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The CHAMP program only included one receiving satellite, so there are a limited 
number of soundings per day.  In the top panel of Fig. 4A we show all CHAMP 
soundings for a typical day, and in Fig 4B, we show those soundings the occur within 3 
hours of a NOAA-15 measurement for channel 9.  After the beginning of the COSMIC 
mission, the number of collocations increases by about a factor of 10. 

In most locations, the CHAMP measurements and the AMSU measurements agree 
well.  This is not always the case for polar latitudes.  In Fig. 5, we show a scatter plot of 
AMSU Channel 9 Tb’s as a function of CHAMP equivalent Tb for June 2007.  For 
latitudes north of 50S, the agreement is quite good, with a mean bias of (AMSU channel 
9 minus CHAMP) of –0.17K.  For latitudes south of 50S, there is a significant bias in the 
CHAMP Tb’s, with a mean bias of 1.43K.  Soundings that show this kind of error occur 
where the temperature profile shows a minimum at a height much higher than normal.  In 
Fig. 6, we show the collocated profiles for June 15, 2007 for the region south of 50S, and 
the rest of the globe.   
 

 
Figure. 5.  Scatter plot of AMSU Tb as a function of CHAMP Tb.  Soundings 
south of 50S are shown in brown.   
 

 
 
 

Figure 6.  AMSU-collocated CHAMP soundings for June 15, 2007.  The left 
panel shows soundings south of 50S.  The right panel shows soundings from the 
rest of the globe.  The AMSU channel 9 weighting function is shown in yellow.  
Soundings where the CHAMP Tb is too low by at least 1.0K are shown in blue, 
while those where the CHAMP Tb is to high by 1.0K or more are shown in red. 
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This error pattern suggests that the temperature weighting function we use to calculate 
effect temperatures from GPS-RO data peaks too low in the atmosphere.  This could be 
due to insufficient Oxygen absorption in the radiative transfer model (Rosenkranz, 1993) 
we use to calculate the AMSU-equivalent brightness temperatures from the GPS-RO 
sounding.  We are investigating other oxygen absorption models to try and resolve this 
problem. 
 
5.  Comprehensive uncertainty estimates for each CDR. 
 

We have developed a comprehensive, Monte-Carlo based approach to estimate the 
uncertainty in our final CDR’s.  This estimate takes the form of a set of 400 realizations 
of the estimated uncertainty in a given CDR.  Thus associated with each CDR (gridded 
monthly temperature averages) there are 400 gridded monthly realizations of the 
estimated error.  We are in the final stages of preparing a manuscript that describes this 
effort.  A draft version of the manuscript is attached at the end of this report. 
 
6.  Software engineering to improve the reliability, transparency, and efficiency of 
our data processing system. 

 
We are developing a number of automatically updated web-based tools to make it 

easier to ensure that the processing system is operating normally and to detect data 

 
Figure 8.  Web-based data monitoring system for AMSU. 
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anomalies before they have a chance to be included in the merged dataset.  We find it 
useful to plot the daily global average brightness temperature for each AMSU channel in 
near real time.  In Fig. 7, we show a screen shot of the time series page in our web-based 
AMSU/AQUA monitoring system.  The page shows time series of global averages for the 
previous 30 days, for the channel selected using the radio buttons on the right side of the 
page.  In the case shown (AMSU channel 5), it is easy to see that there are several days of 
missing data for the NOAA AMSU instruments at the beginning of March.  The causes of 
this gap will be investigated as part of routine monitoring of the AMSU data stream. 
 
7. Planned Work for 3/2010 – 3/2011. 
 

During the next year, we plan work in each of the focus areas for this proposal.  
An outline of our planned work is presented below. 
 

• Continued production of Climate Data Records (CDRs) 
• Complete manuscript on uncertainty estimation. 
• Release Version 3.3. 
• Finish validation of TLS results vs. radio occultation data. 
• Continue to improve automatic monitoring system. 
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Abstract.  Measurements made by microwave sounding instruments, including the 

Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit (AMSU) 

provide a multi-decadal record of atmospheric temperature change.  Calibration methods 

have been developed to merge data from three sets of  MSU/AMSU channels to produce  

long-term temperature records of thick layers of the atmosphere centered in the lower 

troposphere, middle troposphere, near the tropopause, and in the lower stratosphere. In 

this work, we present an internal uncertainty estimate made using a Monte Carlo 

approach that includes contributions to the total uncertainty from sampling error, pre-

merge adjustments, and the merging procedure.  The results of this calculation are a set of 

400 realizations of the estimated errors in the gridded monthly datasets for each 

MSU/AMSU channel.   These realizations are then used to interpret the results of a 

comparison between satellite-derived atmospheric temperature, and temperatures from 

homogenized radiosonde datasets. 
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1. Introduction 

Temperature sounding microwave radiometers flown on polar-orbiting weather satellites 

provide an important record of upper-atmosphere temperatures beginning with the 

Microwave Sounding Unit (MSU) on TIROS-N in late 1978.  In the following years, a 

series of eight additional MSU instruments provided a continuous record up to the 

present, with the MSU on NOAA-14 still in operation.  Beginning in 1998, the first of a 

follow-on series of instruments, the Advanced Microwave Sounding Units (AMSUs) was 

launched.  In order to provide continuous records of atmospheric temperatures, data from 

the AMSU instruments was merged with data for the previous MSU series of 

instruments.  In two previous papers, we described the methods we used to merge data 

from the MSU and AMSU satellites together to form the TLT (temperature lower 

troposphere), TMT (temperature middle troposphere),  TTS (temperature troposphere 

stratosphere), and  TLS (temperature lower stratosphere) datasets. The temperature 

weighting function for each channel is plotted in Fig. 1.  In this work, we estimate the 

uncertainty in these datasets by combining the contributions from various sources of 

error.  These uncertainty estimates are important both when performing comparisons of 

atmospheric temperature estimates from different measurement sources, and when 

undertaking scientific studies using these data. 

 There has been substantial previous discussion of uncertainty in merged microwave 

sounder datasets (Christy et al., 2000; Christy et al., 2003; Grody et al., 2004; Mears et 

al., 2003; Mears and Wentz, 2005; Zou et al., 2006).  These studies have primarily 

focused on uncertainty in trends in global scale averages.  In this work, we extend these 
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earlier estimates by describing uncertainty on a number of spatial and temporal scales, 

and more fully accounting for the uncertainty introduced by sampling error and the 

diurnal adjustment procedures.  Since much of the focus of current research is on changes 

in temperature associated with global climate change, we focus our attention on 

uncertainty in temperature anomalies, rather than bias in the absolute temperature 

measurements.  These estimates apply to the RSS Version 3.2 MSU/AMSU datasets 

(Mears and Wentz, 2009a; Mears and Wentz, 2009b), which are available online at 

www.remss.com.  These datasets are monthly averages of temperature, gridded on a 2.5 

degree by 2.5-degree grid. 

 It is also important to note that the trend errors reported for MSU/AMSU data in the 

major assessment reports (Lanzante et al., 2006; Solomon et al., 2007) are typically 

generated using information about how well the reported time series fit a linear trend.  

This type of error provide information about how much the trend might differ if the earth 

had undergone a different set of short time scale variations, such as those caused by 

ENSO.  They do not provide information about the uncertainty internal to the dataset due 

to measurement and construction error.   

 In Section 2, we describe and estimate the magnitude of the various sources of 

internal uncertainty, and in Section 3, we compare the results from our dataset to results 

from other approaches used to estimate changes in atmospheric temperature.  In Section 

4, we discuss the implications of the spatial and temporal structure of the uncertainties for 

some common methods used to validate satellite data. 

 

2. Estimate of Uncertainty 

http://www.remss.com/�
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 There are a number of sources of uncertainty in the merged MSU/ASMU temperature 

datasets. In this section, we describe those sources that we have identified to be 

important.  These are radiometer noise, sampling error, uncertainty in the diurnal 

adjustment used to account for the effects of drifting local measurement time, and 

uncertainty in the merging parameters.  We note that there may be other unknown 

sources of uncertainty that we have not yet discovered and thus have not described in this 

work.  The level of consistency between different satellites, and between the satellite data 

and radiosonde data leads us to conclude that these hypothetical sources of error are 

likely to be smaller than those that we do describe. 

 It is difficult to determine the exact structure of the uncertainty in the absence of any 

reference dataset that is known to be free from error.  We therefore provide an informed 

estimate of the uncertainty, often based on an analysis of intersatellite differences and our 

knowledge of the merging procedures we used to produce the dataset.  In the following 

sections, we outline the overall approach and the contribution of each source of error to 

the total error. 

 Different uncertainty sources are important for different spatial and temporal scales.  

For example, radiometer noise is important only for short time scales and small spatial 

scales because its effects are rapidly diminished by averaging multiple observations 

together.  Sampling uncertainty tends to dominate other uncertainty sources for a single 

monthly average over a 2.5 x 2.5 degree cell (the smallest temporal and spatial resolution 

we consider), but  decreases rapidly when larger temporal or spatial averages are 

considered.  Diurnal and merging parameter uncertainties are spatially and temporally 
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correlated and thus do not decrease rapidly with averaging, and thus become dominant 

for largest spatial and longest temporal scales.   

 In this work, we use Monte-Carlo methods to produce a large number of instances of 

estimated error in the final dataset.  These instances are constructed so that they have 

spatial and temporal correlations that are consistent with those we expect to be present in 

the final dataset, and thus can be interrogated to produce estimates of the estimated error 

on a variety of spatial or temporal scales. To generate each instance, we start with a 

gridded monthly dataset for each satellite that is set to zero for each month that this given 

satellite has valid data, and is invalid otherwise.  We then add to this dataset estimated 

realizations of the sampling and diurnal adjustment uncertainty.  Both these estimates are 

constructed so that their ensemble averages have zero mean. (Our methods for the 

construction of these uncertainties are described in the following sections.)   The datasets 

with uncertainty added, which we refer to as “noise datasets”, are then analyzed using 

merging procedures that are identical to those used for the real data.  Each noise dataset 

results in a set of noisy merging parameters (intersatellite offsets and target factors).  

Since the noise-free dataset is constructed with all zeros, we know that these merging 

parameters should be zero, and thus any differences from zero are due to the influence the 

underlying uncertainties, i.e. sampling and diurnal adjustment.  Thus, our approach 

describes the total  effect of the underlying uncertainties of the final merged product, 

including both their direct effect and their indirect effect via uncertainty in the merging 

parameters.   

  

a. Radiometer Noise 
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Each measurement made by the MSU or AMSU radiometer has random noise 

associated with the receiver electronics, which can be characterized by the noise 

equivalent delta temperature (NEDT).  For MSU, the NEDT was specified to be less than 

0.3K, and for AMSU, the specified value is 0.25K.  For MSU, each monthly 2.5 x 2.5 

degree cell contains more than 40 measurements, so the uncertainty associated with 

radiometer noise is less than 0.04K.  For AMSU, there are typically more than 300 

measurements, so the corresponding uncertainty for AMSU monthly averages is less than 

0.015K.  These values are significantly less than the uncertainty from any other source.   

 

b. Sampling Errors 

Satellites make measurements at discrete times.  When forming a monthly average, 

all measurements made during a given month that fall within a given 2.5 by 2.5 degree 

cell were averaged together.  Sampling errors occur when this average of discrete 

measurements does not accurately represent the true monthly average.  Fig. 2 shows the 

simulated hourly TMT brightness temperature from the CCM3 atmospheric model (Kiehl 

et al., 1996) for a point in the North Pacific (50°N, 170°W).  The symbols on the line 

represent the times at which the temperature would be sampled by over-flights of two co-

orbiting satellites.   The monthly means obtained by averaging the temperature at these 

sampling times can be quite different than the true monthly mean obtained by averaging 

all the hourly temperatures.  Note that the mean diurnal cycle is very small for this 

location, and thus is not an important source of error.  



RSS Tech. Memo.  032710                                                                                                                           Remote  Sensing  Systems 

The lower tropospheric dataset (TLT) is formed by calculating a weighted difference 

of different fields of view (FOVs) (Spencer and Christy, 1992).  For the left side of the 

MSU swath, this difference is given by 

( ) ( )2 3 4 1 22.0 1.5LT MSUT T T T T− = + − + ,     (1) 

where Tn is the temperature measured by the nth FOV, with T1 denoting the left-hand, 

near-limb view.  A more complex, but similar differencing procedure is used for AMSU 

(Mears and Wentz, 2009b).  On average, this difference has the effect of extrapolating the 

measurement lower in the troposphere.  However, since each individual view makes a 

measurement at a different place, an undesirable spatial derivative is also included in the 

extrapolated value.  We consider the effects of this derivative to be part of the sampling 

error. To estimate this error, we used the hourly CCM3 results to calculate the simulated 

MSU channel 2 brightness temperature at each FOV for a simulated satellite orbit, and 

then used the weighted difference of  values to deduce a satellite-equivalent TLT that 

includes the spatial derivative effect.  This is the compared to the  true average (without 

spatial derivative or temporal sampling effects) of  the modeled TLT-equivalent 

brightness temperature at the location in question.  We find that the spatial derivative 

effect significantly increases the sampling noise for the TLT dataset.  As noted in (Mears 

and Wentz, 2009b), the extrapolation procedure also results in a location-dependent bias. 

This bias can be quite large near the poles due to a net north-south spatial derivative in 

each monthly average.  Since the focus of this work is errors in temperature trends and 

anomalies, we do not evaluate this bias in detail here.   

We formulated a model-based estimate of sampling noise for each channel, and for 

each satellite type (MSU and AMSU) by calculating the differences between the monthly 
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sampled mean and the true monthly mean for 3 different sampling patterns (derived from 

sampling patterns in the observed data) , for 5 years of hourly model output.  Thus, for 

any given month of the year, there are 15 different possible realizations of the sampling 

error.  In Fig. 3, we show an example of the simulated sampling error for each MSU 

channel for the month of January and the standard deviation of the MSU sampling error 

averaged for all months.  Sampling errors are largest in the mid latitudes, where the 

effects of large day-to-day variability and gaps in temporal sampling are combined 

together.  The gaps in temporal sampling are even larger in the tropics, but there is 

usually much less day-to-day variability so that the magnitude of the sampling error is 

less.  Sampling errors in the tropospheric channels tend to be largest in the winter 

hemisphere, due to the presence of more intense mid-latitude cyclones.  Fig. 3 also shows 

that the errors at a given grid point tend to be strongly correlated with those in other 

nearby grid points due to similar temporal sampling patterns.   

 

c. Diurnal adjustment errors. 

During the lifetime of most of the MSU and AMSU instruments, the orbit of each 

instrument’s satellite platform slowly changed as a function of time, leading to drifts in 

local equator crossing time (see Fig. 4).  These drifts cause the diurnal cycle to be aliased 

into the long-term records unless their effects are characterized and removed. As 

discussed in Mears and Wentz (2008a; 2008b), we used model-based diurnal cycle to 

make adjustments for drifting local measurement times.  We estimate the uncertainty in 

this diurnal adjustment by evaluating the diurnal adjustments derived from different 
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climate models.  These are used to generate plausible realizations of the diurnal 

adjustment error D, given by 

 ( )
1

N

i i
i

D a D D
=

= −∑ . 

 

Here, iD  is the adjustment calculated using the ith model, D  is the mean adjustment, and 

the 'ia s are normally distributed random numbers with zero mean and unit variance.   

For the data products derived from MSU channel 2 and AMSU channel 5, two 

models are available for calculating the diurnal adjustment,  the NCAR Community 

Climate Model-3 (CCM3), (Kiehl et al., 1996), and the Hadley Centre Global 

Environmental Model (HADGEM1), (Martin et al., 2006).  In our previous work, the 

CCM3 model was used to formulate our diurnal correction.  For the TTS and TLS data 

products, which have temperature weighting functions centered higher in the atmosphere, 

we  also considered a diurnal adjustment derived from the Canadian Middle Atmosphere 

Model (CMAM, Beagley et al., 2000).  Our version of the data from this model lacks a 

surface temperature, making it inappropriate for TLT and TMT, which have a substantial 

contribution due to surface emission.   

The limited number of models available is not ideal.  We note that the small number 

of models makes tenuous our implicit assumption that the differences between the 

specific models we have available span the range of possible error.  Despite this 

limitation, we proceed with our analysis, since it provides a significant step forward from 

earlier attempts to characterize the uncertainty in the diurnal adjustment.  In Fig. 5, we 

show a typical realization of the diurnal adjustment  and error in the diurnal adjustment 

for each channel.  In Fig. 6, we show global averages of the diurnal adjustments applied 
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to the NOAA-14 instrument.  On a global scale, the HADGEM1 model tends to results in 

larger diurnal adjustments, and a larger seasonal cycle in these adjustments, while the 

CMAM model tends to result in smaller adjustments   

Note that there are large spatial correlations in the diurnal adjustment errors, 

particularly for the TLT and TMT channels.  For these channels, the HADGEM1 diurnal 

cycle is significantly larger in arid land regions than the CCM3 diurnal cycle.  We do not 

know the reason for this difference, though we suspect it is influenced by differences 

between the land surface parameterizations used by the two models.   

These realizations of the diurnal uncertainty are added to the realizations of the 

sampling uncertainty we calculated in the previous sections, yielding a set of 400 “noise 

realizations” that are consistent the estimated combined  uncertainty from both sources. 

 

d. Uncertainty in merging parameters 

Earlier work found that global averages of simultaneous measurements made by co-

orbiting MSU instruments differ by both a time-invariant intersatellite offset and an 

additional term that is strongly correlated with the variations in temperature of the hot 

calibration target for each satellite (Christy et al., 2000).  To describe these differences, 

we use an empirical error model for brightness temperature incorporating the target 

temperature and scene temperature correlation (Mears and Wentz, 2009a), 

 

, 0 ,MEAS i i i TARGET i i SCENE iT T A T Tα β ε= + + + +  (6) 
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where TMEAS,i is the brightness temperature measured by the i-th instrument, T0 is the 

true brightness temperature, Ai is the temperature offset for the i-th instrument, αi is a 

small multiplicative “target factor” describing the correlation of the measured antenna 

temperature with the temperature anomalies of the hot calibration target, TTARGET,i.  The 

parameter βi describes the correlation of the calibration error with the scene temperature 

anomaly TSCENE, and εi is an error term that contains additional uncorrelated, zero-mean 

errors due to instrumental noise and sampling effects.  The merging parameters used for 

the measured datasets were found using a regression procedure that minimizes 

intersatellite differences between monthly averages.  Since these monthly averages 

contain errors from various sources (dominated by the sampling and diurnal sources 

mentioned above) there is uncertainty in the calculated merging parameters.  This 

uncertainty leads to additional uncertainty in the final merged dataset.  In our analysis we 

found that the effect of the uncertainty in the βi’s was negligible compared to other error 

sources and is ignored from this point forward to simplify the analysis. 

The αi’s (target factors) are the most important parameters for long term behavior of 

the merged dataset since they are difficult to determine and they multiply the target 

temperatures, which often show large long-term changes.  Figure  7 shows the standard 

deviation of the fitted αi’s for each satellite and channel calculated using the 400 noisy 

realizations from the section above.  For TLT and TMT, we find that the largest 

uncertainty is in the value of αNOAA-09, consistent with our earlier findings (Mears et al., 

2003).   For TLS, the uncertainty in αNOAA-09 is less because period during which MSU 

channel 4 was functioning for both  NOAA-09  and  NOAA-10 was longer.  For TTS, 
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satellites before NOAA-10 are not used because both NOAA-09 and NOAA-06 have 

large, unexplained drifts in the data for MSU channel 3.   

Once the αi’s are determined, we then find the latitude dependent offsets using a 

regression procedure for each 2.5 degree-wide latitude band.  These offsets also vary due 

to the sampling noise, diurnal adjustment error, and target factors error determined in 

previous steps.  The diurnal adjustment, and thus any error in the diurnal adjustment is 

typically much larger over land, the errors in these offsets tend to be dominated by errors 

in the land diurnal cycle.  We note that since we use a single offset for each latitude band 

for both land and ocean regions, any land-caused error can affect the merged dataset in 

ocean regions at the same latitude. 

The MSU and AMSU measurement bands for the corresponding channels for the two 

instruments differ, leading to small differences in vertical weighting, which in turn  lead 

to small differences in brightness temperature that depend on location and time of year.  

We remove these differences empirically by using location and time-of-year dependent 

offsets to adjust the AMSU measurements so that they match the MSU measurements 

during the 1999-2004 period.  These offsets also contain error, which is modeled by our 

Monte-Carlo process. 

  

e.  MSU/AMSU drift for TMT 

Examination of the differences between TMT from MSU channel 2 on NOAA-14 and 

AMSU channel 5 on NOAA-15 shows a long-term trend difference, with NOAA-15 

cooling at a rate of 0.2 K per decade relative to NOAA-14 over the July 1998 to 

December 2004 period of overlap.  This trend difference is not present for the other 
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channel pairs, including, to our surprise, TLT.  The cause of this trend difference is not 

known, and could be a drift in calibration in one or both of the satellites.  Since we do not 

know which satellite is closer to being correct, we treat this drift as an additional source 

of uncertainty.   

To estimate the effect of this source of uncertainty, we add in artificial ascending 

(descending) location independent trends of 0.2K per decade to the MSU (AMSU) noise 

realizations during the overlap period.  Then, we pick 2-year portions of this overlap from 

a set of four possible periods (1999-2000, 2000-2001, 2001-2002, and 2002-2003) at 

random.  MSU data from after the end of the period, and AMSU data from before the 

beginning of the period is ignored.   

f. Results 

At the end of the Monte Carlo merging process, we have 400 realizations of the 

expected error in our merged MSU/AMSU datasets.  In Fig. 8, we show maps of a 

realization of the gridded error for a typical month, along with maps of the standard 

deviation of the gridded errors calculated across the 400 realizations.  For TLT and to a 

lesser extent, TMT, the errors are dominated by errors in the diurnal adjustment over 

land.  Errors in TTS are significantly less than for the other channels, due to both the 

smaller diurnal adjustment, and to the relatively small sampling error.   

 Figure 9 shows the range of global time series for each channel.  The filled region 

is plus/minus one standard deviation for the globally averaged value for each month, 

while the two blue lines are the global time series with the largest and smallest overall 

trend.  The red filled region is the plus/minus one standard deviation range without 

including the uncertainty due to the diurnal adjustment.  Table 2 shows the 2-s estimated 
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error in the global  and tropical (20S to 20N) trends, with and without including the 

uncertainty due to the diurnal adjustment. For TMT, the MSU-AMSU drift is also 

excluded at the same time as the uncertainty in the diurnal adjustments.   

 

3.  Comparison with complementary long-term atmospheric temperature datasets. 

Our set of gridded estimated error realizations will allow for the first time a rigorous 

analysis of the uncertainty inherent in a number of dataset intercomparisons and climate 

model validation activities.  These include comparisons of microwave satellite data with 

in situ datasets, comparisons with other satellite-derived temperature datasets such as 

those from COSMIC, and comparison with reanalysis and climate model output, 

including fingerprinting studies.   Here we provide an example of this type of analysis by 

briefly describing the intercomparison of our data with four homogenized radiosonde 

datasets. 

We chose four of the most recent homogenized datasets (HadAT, RAOBCORE, 

RICH, and IUK) (Thorne et al., 2005), (Haimberger, 2007; Lanzante et al., 2003) 

(Haimberger et al., 2008) (Sherwood et al., 2008). The datasets were constructed using 

automated methods to find and estimate the size of “breakpoints” in the time series for 

radiosonde station which are then used to create adjusted versions of the radiosonde data 

with the effects of the detected breakpoints removed.  A short summary of the features of 

each dataset is available in (Mears and Wentz, 2009b).  These datasets are either 

available as gridded measurements vertically-weighted to correspond to each channel, or 

contain enough information so that it is possible for us to construct such a gridded dataset 



RSS Tech. Memo.  032710                                                                                                                           Remote  Sensing  Systems 

by weighting individual levels.  (We do not consider the RATPAC dataset because after 

1997, a homogenized version of the dataset is only available as regional averages.)  

We have already completed an intercomparison of TLT with these radiosonde 

datasets (Mears and Wentz, 2009b), and thus this work only serves to add error estimates 

to this previous work.  For TMT, TTS and TLS we follow the earlier analysis method 

exactly.  For each month, the satellite data is sampled at the location of the available 

radiosonde stations in each dataset.  This allows us to make a direct comparison with the 

radiosonde products, without needing to worry about whether or not the radiosonde 

sampling is dense enough to faithfully represent a global average.  The appearance and 

disappearance of radiosonde stations over time is also automatically taken into account.  

Note that this procedure results in a separate sampled satellite dataset for each radiosonde 

dataset.  We then construct area-weighted global and regional time series from each 

dataset for intercomparison.  An example set of time series, for globally averaged TLS 

RAOBCORE data is shown in Fig. 10.  RAOBCORE was chosen for this plot because it 

agrees better with the satellite based TLS measurements than the other three radiosonde 

datasets, which all show more stratospheric cooling than the satellite data.  In Fig. 10, we 

show for the satellite data both the true global time series, and the time series calculated 

using the sampling procedure.  The sampling procedure improves the agreement between 

the radiosonde data and the satellite data on short time scales in almost all cases.  Often, 

agreement in long-term trend is also improved. 

Trend error estimates for the radiosonde-sampled RSS satellite data we obtained by 

constructing error time series by sampling the gridded error realizations at the radiosonde 

locations, and then calculating the standard deviation of the trends in these time series.  In 
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general, the estimated trend error is larger than it is for more spatially complete averages, 

reflecting the influence of spatial sampling error.  This is particularly true for the 

southern extratropics, where the radiosonde sampling is poor. 

Figure 11 shows a summary of trends for each channel, radiosonde dataset and 

averaging region.  We also include sampled trends from the UAH (Christy et al., 2003) 

and STAR (Zou et al., 2006) satellite datasets, calculated using identical methods.  We 

use the most recent versions of each dataset available in gridded form – versions 5.1 

(TMT, TLS) and 5.2 (TLT) for UAH, and 1.3 for STAR.  Several general patterns are 

evident in this figure.  First, agreement between radiosonde and satellite datasets is best 

for TLT.  For TLT, both the radiosonde and UAH trends lie within our error bars, except 

for HADAT in the southern extratropics.  All datasets agree the largest warming is in the 

north, with much less warming in the south, and becomes worse as we move higher in the 

atmosphere.  As we move higher in the atmosphere, the radiosonde-satellite trend 

differences tend to increase.  For TMT, only about 50% of the radiosonde trends lie 

within our error bars, except in the northern extratropics, where the agreement remains 

good.  For TMT, the STAR trends to be larger than RSS, while the UAH trends tend to 

be less. For both TLT and TMT, the different satellite datasets agree well in the southern 

extratropics, where the effects of diurnal drift are small because of the small amount of 

land.  For TTS , the RSS data show less warming than the STAR data, and more than the 

radiosonde data.  Almost all other datasets lie outside the range of our error bars, 

suggesting that our analysis may be missing some important error sources for this 

channel.  For TLS, the results are similar, except RSS and STAR are in better agreement 

with most STAR trends lying inside our error bars.  The radiosonde data show much 
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more cooling than the RSS satellite data, particularly in the southern extratropics.  The 

increasing discrepancy as we move higher in the atmosphere is likely to be caused at least 

in part by residual errors in the homogenized radiosonde datasets (Mears et al., 2006; 

Randel and Wu, 2006). 

TLT trends in the tropics have been the subject of much recent controversy (Douglass 

et al., 2008; Santer et al., 2008).  Unfortunately, this is a region where our estimated 

uncertainty is larger than other regions due to uncertainty in the diurnal adjustment. Our 

error bars encompass all radiosonde trend estimates as well as trends from the UAH 

dataset.   

It is notable than agreement between all radiosonde and satellite datasets is better in 

the northern extratropics, where the radiosonde spatial sampling is much more complete. 

Spatial complete sampling is likely to improve the accuracy of the homogenization 

methods, which are based on neighbor comparisons.  

 

4.  Conclusions 

 We have performed a comprehensive internal error analysis of our MSU/AMSU 

based datasets of atmospheric temperature.  This work improves upon earlier work in that 

it provides uncertainty information on a variety of spatial and temporal scales, which is 

critical for meaningful application of the datasets to the study of climate change on both 

global and regional scales.  The fundamental results of our calculations, a set of 400 

realizations of estimated error for each MSU/AMSU channel, is available for download 

on our website, http://www.remss.com.  
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Table 1 
Long Term Trends using Different Diurnal Models 

 
Channel Diurnal Model Global (80S to 80N) Tropics (30S to30N) 

TLT (70S to 80N) CCM3 0.168 0.147 
HADGEM 0.181 0.195 

TMT CCM3 0.093 0.114 
HADGEM 0.109 0.137 

TTS (1987-2008) 
CCM3 -0.026 -0.016 
HADGEM -0.015 -0.004 
CMAM -0.023 -0.019 

TLS 
CCM3 -0.335 -0.321 
HADGEM -0.324 -0.306 
CMAM -0.348 -0.342 

 
 

Table 2 
Uncertainty estimates (2σ) for trends for each channel (K/decade) 

 
 
 

 TLT  TMT TTS TLS 

Global (75S-75N) All Errors 
No Diurnal 

0.044 
0.022 

0.042 
0.012 

0.014 
0.008 

0.028 
0.020 

Tropical (20S-20N) All Errors 
No Diurnal 

0.034 
0.026 

0.038 
0.012 

0.020 
0.008 

0.030 
0.020 
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