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Project Overview and Summary

Produce a gridded, monthly, deep-layer atmospheric
temperature measurements from MSU and AMSU radiances

4 Channels
. TLT, TMT, TTS, TLS

Performance baseline (target versus actual)
. 77

A

Deliverables (as applicable)
. Monthly Updates to Gridded Dataset
. Simplified Versions of Code and Monitoring Tools
ECVs addressed (as applicable)
. Temperature
Current/expected user communities
. Climate Research
. Model Evaluation
) @: . Policy Makers (Energy, CO2 emissions)
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Research- to- Operations
Results

What is the deliverable?

. Simplified version of QA, calibration and
merging code. (Fixed parameters)

. |Ideal world -- everything ported to python

What are your post-award plans with continuing
this work, or not?

. Transfer Fixed Version of Algorithm to NOAA

. Continue Development Work to Improve Future
Versions of Product (via CDR team)

NOAA points-of-contact or collaborators, as
applicable
e
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Uncertainty Estimates

Main progress in last year is in area of uncertainty
estimation and representation

Uncertainty most critical part of EDR to CDR

For MSU/AMSU, uncertainty difficult to represent due to
correlations in errors across time and space

Our approach -- use Monte-Carlo to produce a large
number (currently 400) of realizations of the possible
error that contain all known sources of error, and their
effect on the merging process

These results will be available to users
(#lons x #lats x #months x 400) array of possible errors.
Paper submitted to JGR




Flow of Uncertainty

Uncertainty caused by diurnal

adjustments and temporal

averaging

Flows to estimates of the needed

Calibration adjustments

And causes uncertainty
results.

in final

Quantitatively estimated via

Monte Carlo approach:

400 Realizations of gridded monthly

error estimates.

RSS L1B MSUJAMSU data
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Tb climatology as
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RSS AMSU/MSU Level 2C Data
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calculate global averages
of Ths and target
temperatures
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target factors.

Apply target factors to
Target Factors — T e
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Calculate zonal Means

Perform regression to
determine offsets as
function of latitude

intersatellite offsets

S

apply offsets to
Gridded Data

Combine calibrated

data from different
satellites together

AMSU Level 3 data
-

b s
MSU Level 3 data
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calculate MSU-AMSU
offsets as a function of
Iocation and month

MSU-AMSU offsets

apply MSU-AMSU
offsets to AMSU Ths

Combine MSU and AMSU
monthly mean gridded Ths

MSUAMSU Level 3
Temperature CDR
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Global Diurnal Adjustment from
Different Models

CCM3 HADGEM
TLT
1.0+ B o -
J _\/\f\/"/\/“/\j\/\’\/\ {’v\/_/\.//\/ v -
IV an Ve Vanve

0.0} - = 4
- T TMT ] i 1
X
< 04} ] L M NISNA
c
g L AN L/ va J
B WNW
-_g- 0.0L 4 " 4
< CMAM
‘_é 0.2
3 L TTS | 1 E
[m] AN AN =
= i
E 00 s e e N | Www—w_ﬁ — MM\/M\’ —;
o ]
0]

02
02 TLS b 1L A
0.0 1+ M\“’“w\, ¢ -
-0.2

1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004

Year




Remote Sensing Systems

www.remss.com

Time Series of Errors from Monte-Carlo

Estimated Error (K)

Yellow - 2-sigma range without errors in diurnal adjustment
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Adjustments

- TLS Global

Temperature Anomaly (K)

|~ — CCM3: Trend = -0.335 K/decade
 — HADGEM1: Trend = -0.324 K/decade
—— CMAM: Trend = -0.348 K/decade

Trend Differences with Different Diufergd>
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Errors in Trends, TLT, 1979-2008
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Example: Long Term Trends

Compare trend uncertainty in 3
weightings
Global Average
Tropical (20S to 20N)




Trends In error realizations
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TMT, 19/79-2008
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Example 2 ':Sgﬁ:ems | .;_ p
Comparison with Homogenized
Radiosondes

Sample both real data and error realizations at the radiosonde locations
Analyze Sampled Error Time Series to determine uncertainty estimate
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Radiosonde Comparison:

Remote Sensing Systems 25
www.remss.com o>

TLT

0.4 - . -
P (d) ¥ HadAT A RSS
GJ » RAQOBCORE 1.4 O uUaH
O XK
G - —
()
D
S 02r il :
— X &z-

<

e L a e _
g : ’
= TLT "

0‘0 1 1 1 1

755-75N 755-30S 30S-30N 30N-75N




Remote Sensing Systems | '

Recommendations

www.remss.com




Remote Sensing Systems | '

Recommendations

www.remss.com




	Continued Monitoring of Atmospheric Temperature Using Data from Microwave Sounding Instruments
	Slide Number 2
	Slide Number 3
	CDR Maturity Matrix
	Slide Number 5
	Uncertainty Estimates
	Flow of Uncertainty
	Global Diurnal Adjustment from Different Models
	Time Series of Errors from Monte-Carlo
	Trend Differences with Different Diurnal Adjustments
	Errors in Trends, TLT, 1979-2008
	Example: Long Term Trends
	Trends in error realizations �TMT, 1979-2008
	Example 2�Comparison with Homogenized Radiosondes 
	Radiosonde Comparison: TLT
	Slide Number 16
	Slide Number 17

