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1. Introduction 

1.1 Purpose 
The purpose of this document is to describe the algorithm submitted to the 

National Climatic Data Center (NCDC) by Carol Anne Clayson at Woods Hole Oceanographic 
Institution (WHOI) that will be used to create the Ocean Surface Bundle Climate Data 
Record (CDR).  Which consists of the Sea Surface Temperature – WHOI CDR, the Ocean 
Near Surface Properties CDR, and the Ocean Heat Fluxes CDR. The CDR bundle uses as its 
main basis the Special Sensor Microwave/Imager (SSM/I), the Special Sensor 
Microwave/Imager Sounder (SSMIS), and the Advanced Very High Resolution Radiometer 
(AVHRR). The actual algorithm is defined by the computer program (code) that 
accompanies this document, and thus the intent here is to provide a guide to understanding 
that algorithm, from both a scientific perspective and in order to assist a software engineer 
or end-user performing an evaluation of the code. 

1.2 Definitions 
Following is a summary of the symbols used to define the algorithm. 

Tb = Brightness temperature                                (1) 

Ta = 10-m air temperature                                (2) 

SST = Sea surface temperature                                (3)  

U10 = 10-m wind speed                                (4) 

Qa = 10-m specific humidity                                (5) 

Qs = sea surface specific humidity                                (6) 

LHF = surface latent heat flux                                (7) 

SHF = surface sensible heat flux                                (8) 

CLW = cloud liquid water                                (9) 

PW = precipitable water                                (10) 

1.3 Referencing this Document 
This document should be referenced as follows: 

Ocean Surface Bundle - Climate Algorithm Theoretical Basis Document, NOAA Climate Data 
Record Program [CDRP-ATBD-0578] Rev. 2 (2016). Available at 
http://www.ncdc.noaa.gov/cdr/ 
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1.4 Document Maintenance 
Synchronization between this document and the algorithms is achieved through 

version and revision numbers. The version and revision numbers found on the front cover 
of this document can be compared with the values of VERSION and REVISION in the source 
file. If the document applies to the algorithm, then these numbers will match. If they do not 
match, and it is found that the document needs to be updated, then the header comment in 
the file should be consulted – under its REVISION HISTORY section is a description of the 
changes for each version and revision from which the necessary updates to this document 
can be made. 
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2. Observing Systems Overview 

2.1 Products Generated 
The primary generated products are global open-ocean climate data records 

(CDR) of near-surface air temperature (Ta), wind speed (U10), specific humidity (Qa), and 
sea surface temperature (SST), as well as the resulting fluxes of latent heat (LHF) and 
sensible heat (SHF). The data records for Ta, U10, and Qa are generated from the V1.0 
Fundamental Climate Data Record (FCDR) of brightness temperature (Tb) data from the 
Special Sensor Microwave/Imager instruments (SSM/I) on board the Defense 
Meteorological Satellite Program spacecraft F08, F10, F11, F13, F14, and F15 provided by 
Colorado State University, and the V2.0 FCDR of Tb data from the Special Sensor 
Microwave/Imager Sounder (SSMIS) on board the DMSP spacecraft F17 and F18 also 
provided by Colorado State University. The method for determining Ta, Qa, and U10 is 
described in more detail in Section 3 and is based on the methodology of Roberts et al. 
(2010) and Clayson et al. (2014). The SST fields are based on the V1.0 R2 CDR of daily 1/4o 
Optimum Interpolation Sea Surface Temperature (OISST), with a diurnal warming 
correction added using the U10 data from this dataset. The peak solar radiation used in the 
SST diurnal warming algorithm is the Global Energy and Water Experiment (GEWEX) 
Surface Radiation Budget (SRB)-Release 3.0 dataset (Stackhouse et al. 2011) through 
February 2000, and then the CERES-Syn1Deg-3H product (Ed3A; CERES 2016) is used. Due 
to the lag in production of the CERES-Syn1Deg-3H product, the NASA CERES FLASHFlux  
(Kratz et al. 2014) product is used for the near-real-time data, currently beginning 
December 2015. Precipitation is from the Global Precipitation Climatology Project (GPCP) 
v1.2 one-degree daily precipitation data set (Huffman et al., 2001) for the time period from 
October 1996. Prior to this time Hamburg Ocean Atmosphere Parameters and Fluxes from 
Satellite Data (HOAPS) v3.2 precipitation data (Andersson et al. 2010; Fennig et al. 2012) is 
used and is described in more detail in Section 3. The resulting LHF and SHF fluxes are 
calculated from these fields of Ta, Qa, U10, and SST using a neural network version of the 
Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 flux algorithm (Fairall et al. 
2003; Clayson et al. 2014) and is described in more detail in Section 3. Ta, Qa, and U10 
values are found in the ATMOS files; SST is found in the SST files, and lastly LHF and SHF 
are found in the FLUX files. 

Accompanying the fields of Ta, Qa, U10, SST, and LHF and SHF are data quality 
information fields, indicating which grid cells are land or ice masked, lake areas, and where 
the data is based solely on the neural network-derived quantity or is interpolated. Further 
information is available in Section 3. 

2.2 Instrument Characteristics 
One set of satellite data used in this algorithm is collected by SSM/I instruments 

on board the Defense Meteorological Satellite Program (DMSP) satellites F08, F10, F11, 
F13, F14, and F15. The SSM/I sensor has seven channels at four frequencies, three of which 
are dual polarized, horizontal (H) and vertical (V): 19.4, 37.0, and 85.5 GHz. The 22.2 GHz 
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frequency has only a single vertically polarized channel.  These satellites are in polar orbits 
with nominal altitudes ranging from 830 to 860 km with varying earth incidence angles of 
roughly 53 degrees. The footprint or instantaneous field of view of the sensor varies with 
frequency (from a 70 x 45 km for the 19.35 GHz channels to 16 x 14 km footprint of the 
85.5 GHz channels). The brightness temperatures used in these retrievals based on the 
SSM/I instruments are from the Colorado State University (CSU) Fundamental Climate Data 
Records (FCDR). Full information for the brightness temperatures and the SSM/I 
instrument characteristics can be found in the C-ATBD for that dataset (CDRP-ATBD-0337, 
Rev. 1 07/11/2013).  

Beginning in March 2008, additional data from the SSMIS instruments on board 
the DMSP satellite F17 are included. Data from the SSMIS instruments on board DMSP 
satellite F18 begins March 2010. The instrument is a conically scanning passive microwave 
radiometer sensing upwelling microwave radiation at 24 channels covering a wide range of 
frequencies from 19 – 183 GHz. Data is collected along an active scan of 143.2 degrees 
across track producing a swath width on the ground of approximately 1707 km with 12.5 
km scene spacing. The channels consist of the following sets: Environmental sensor (ENV) – 
channels 12- 16; Imager (IMG) – channels 8-11 and 17-18; Lower atmospheric sounding 
(LAS) – channels 1-7 and 24; Upper atmospheric sounding (UAS) – channels 19-23. Of these 
channels, the SSM/I equivalent channels include all of the environmental channels (12- 16) 
and imager channels 17 and 18. This product uses the CSU FCDR brightness temperatures 
the following dual-polarized, intercalibrated channels: 19.4, 37.0, and 91.7 GHz. As with the 
SSM/I, the 22.2 GHz frequency has only a single vertically polarized channel. Full 
information for the SSMIS brightness temperatures and the SSMIS instrument 
characteristics can be found in the C-ATBD for that dataset (CDRP-ATBD-0338, Rev. 2 
04/15/2015). 

Another set of satellite inputs are from the AVHRR (Advanced Very High 
Resolution Radiometer) instruments. AVHRR technical documentation, including 
instrument and operational data formats is available at 
http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/intro.htm. The AVHRR satellites are 
onboard the NOAA operational polar orbiting TIROS-N series satellites. These satellites are 
in near-polar, sun-synchronous orbits with orbital periods of about 102 minutes. The 
NOAA Polar Orbiter Data User’s Guides (PODUG) November 1998 revision describes NOAA 
14 and earlier, while the next generation instruments covering NOAA 15 and later are 
covered by the NOAA KLM User’s Guide (April 2009 revision). NOAA-N (NOAA 19 after 
launch) and –P are also described in the NOAA-N, -P Supplement 
http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/nnpsupp.htm. This data is used 
as input for the Daily 1/4o Optimum Interpolation Sea Surface Temperature (OISST) CDR, 
which is the base SST that is an input for the diurnally-varying SST in this dataset. Details 
on the OISST CDR can be found in CDRP-ATBD-0303 (Rev. 2 09/17/2013). 

  

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/intro.htm
http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/nnpsupp.htm
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3. Algorithm Description 
Section 3.1 describes the SeaFlux Ocean Surface Bundle (OSB) CDR V2 algorithm. 

A processing flow overview is given in Section 3.2. Section 3.3 describes the input datasets 
as well as ancillary files. The theoretical background and computations are discussed in 
Section 3.4. 

3.1 Algorithm Overview 
The 10-m air temperature (Ta), 10-m specific humidity (Qa), and 10-m wind 

speed (U10) are determined from the input brightness temperatures from the CSU FCDR at 
swath level using a neural network algorithm. This neural network algorithm (described in 
further detail in Section 3.4.1) also uses the Daily 1/4o Optimum Interpolation Sea Surface 
Temperature (OISST) CDR as input.  All potentially contaminated pixels including land and 
ice are flagged and discarded. The data are combined across satellites and binned. Lastly 
the data are interpolated to fill in missing parameters for each location to produce the 
ATMOS files. 

The SST fields takes as input data from several sources: (1) the binned ATMOS 
files, (2) precipitation data from either the HOAPS dataset or the GPCP product, and (3) 
solar radiation fields from the GEWEX SRB, the CERES-Syn1Deg-3H, or the FLASHFlux 
dataset, and calculates the peak warming at each grid point using the algorithm described 
in more detail in Section 3.4.6. This peak diurnal warming is used to create a curve of daily 
SST variability, which is added to the OISST data for each day and location. The final 
diurnally-varying SSTs and the QC flags associated with these data are found in the SST files 
of this dataset. 

Lastly, the ATMOS and SST files are used to calculate the surface fluxes using a 
neural network version of the COARE 3.0 flux algorithm. The output of the neural network 
described in Section 3.4.1 are the sensible and latent heat fluxes found in the FLUX files of 
this dataset. 

3.2 Processing Outline 
An overview of the routine production flow for producing the Ta, Qa, and U10 

fields is shown in Figure 1 and follows the method outlined in Section 3.1. The first main 
step is to take the input brightness temperatures files and the input SST field and calculate 
the Ta, Qa, and U10 fields at the swath-level using the neural network routine. The second 
main step is to combine the surface parameters across all satellites, and then bin into eight, 
3-hourly bins per day and average these into a 0.25o x 0.25o grid. The last main step is to 
interpolate the data to fill in missing parameters for each location.  As described in Section 
3.4.3, the interpolation makes use of the gradient of variability in version two of the 
Modern Era Retrospective-analysis for Research and Applications (MERRA-2; Bosilovich 
2008) output. Each of these main steps is described in detail below. 
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Figure 1: Top-level processing flow for production of Ta, Qa, and U10 data. 

 

An overview of the routine production flow for producing the SST fields is shown 
in Figure 2. The initial step takes as input the binned U10 fields, the HOAPS or GPCP 
precipitation fields, and the ISCCP solar radiation fields, and calculates the peak diurnal 
warming at each point in the 0.25o x 0.25 o grid. This peak diurnal warming is used to create 
a curve of daily SST variability, which is added to the OISST data for each day and location. 
Further details are below. 
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Figure 2: Top-level processing flow for production of SST data. 

 

The last step is to use the binned and interpolated data to calculate the surface 
fluxes LHF and SHF as shown in Figure 3. This is done using a neural net version of the 
COARE 3.0 algorithm flux algorithm, as described in Section 3.4.1. 
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Figure 3: Top-level processing flow for production the ocean heat flux data. 

 

3.2.1 Production of Qa, Ta, U10 
 The overview of the production of the swath-level fields of Qa, Ta, and U10 is 

shown in Figure 4. The Qa, Ta, and U10 swath-level fields are generated from the NOAA 
L2A CSU SSM/I Tb fields (the CSU FCDR brightness temperatures). Pixels are removed by 
applying the quality flag provided with the brightness temperature data. A first-guess SST 
from the Reynolds OISSTv2 data is then collocated with the Tb data. For all of the satellites 
except F08, cloud liquid water content is calculated using Weng et al. (1997), and pixels 
that are rain-contaminated (where the CLW is greater than 0.2575 kg m-2) are discarded. 
The process flow is similar for F08, except that a cloud liquid water mask is NOT applied, as 
the level of noise in the 85 GHz channel is too high to produce an accurate cloud liquid 
water mask (W. Berg, personal communication, 2014). For F08, the remaining Tb data are 
then weighted according to the neural network weights appropriate to the individual 
satellite. For satellites F10-F18, pixels are segregated by sky condition: clear sky when CLW 
is less than 0.0257 kg m-2; cloudy sky when CLW is greater than or equal to 0.0257 kg m-2. 
This yields one neural network for F08 (nnCLRCLD_F08NoC85.mat) and two neural 
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networks each for F10-F18 (nnCLR_F10.mat, nnCLD_F10.mat, nnCLR_F11.mat, and so on). 
For details on the neural net weighting technique, see Section 3.4.1. The resulting files are 
swath-level, daily, for each satellite of Qa, Ta, and U10. 
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Figure 4: Processing flow for creation of swath-level fields of Ta, Qa, and U10. 
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The next step for the Qa, Ta, and U10 fields is to take all of the swath-level fields 
from each satellite and bin the appropriate data into 3-hourly bins. Two types of 
contamination are identified and the affected swath pixels are discarded: land-
contaminated pixels (those within 45 km of land), and snow- or ice-contaminated pixels. A 
snow-ice-mask provided by the GEWEX. Additional swath pixels are also discarded for 
nonphysical values for Qa, Ta, or U10. (See Section 3.4.1 for description of nonphysical 
ranges.) An overview of this procedure is shown in Figure 5. Individual estimates are 
binned and averaged across all of the appropriate time, location, and satellites onto the 3-
hourly temporal (first) and quarter-degree grid (second). The 3-hourly grid contains 
averages over the periods [00Z – 03Z), [03Z – 06Z), etc. 
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Figure 5: Processing flow for creation of gridded fields of Ta, Qa, and U10 data. 

 

The initial gridding results in a large fraction of unobserved locations. This 
fraction changes as a function of the number of available satellites. The methodology used 
to provide a global open-ocean dataset is shown in Figure 6. The 3-hourly, gridded surface 
parameters are first interpolated using the Model-Based Interpolation (MoBI) procedure 
discussed in Clayson et al. (2014) and further described in Section 3.4.1. As with swath 
pixels in the previous step, cells filled with the MoBI procedure are discarded for 



CDR Program Ocean Surface Bundle C-ATBD CDRP-ATBD-0578 
Rev. 2   06/03/2016 

A controlled copy of this document is maintained in the CDR Program Library. 
Approved for public release. Distribution is unlimited. 

18 

nonphysical values of Qa, Ta, or U10 as a quality control measure. (See Section 3.4.1 for 
description of nonphysical ranges.) Additionally, cells with high wind speeds 
(U10 > 45 m s-1) that are near ice are flagged as ice and filled as missing to eliminate 
unverifiable values outside the range of training data for U10. 

After interpolation, to assist in reducing spurious edge gradients between 
known and analyzed locations due to this increased noise, a Gaussian weighted smoothing 
is applied across five spatial points and three temporal points. This post-processing results 
in final analyzed cells that have small departures from the directly observed satellite 
observation. This completes the processing of the surface parameter fields of Ta, Qa, and 
U10 that are part of the CDR, resulting in files called 
SEAFLUX-OSB-CDR _V02R00_ATMOS_D$$_C$$.nc. 

 

 

Figure 6: Processing flow for creation of final interpolated fields of Ta, Qa, and 
U10. 
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3.2.2 Production of SST 
 The base SST is the OISSTv2.0 as described above. The base SST is analogous to 

a foundation SST (Donlon et al. 2007), which is defined as the depth at which diurnal 
warming is not present. The next step is determination of the peak solar radiation (dSST) at 
every grid cell for the entire time period, which follows the processing flow shown in 
Figure 7. The peak solar radiation every day is determined from the GEWEX SRB Release-
3.0 dataset through February 2000, the CERES-Syn1Deg-3H product is used from March 
2000 through November 2015, and finally the NASA CERES FLASHFlux (Kratz et al. 2014) 
product is used for the near-real-time data. The mean daily precipitation is determined 
from the HOAPS precipitation data set through September 1996, and from the GPCP data 
set from October 1, 1996. The daily winds are calculated from the interpolated U10 fields 
described in Section 3.2.1, and a peak diurnal warming is calculated using the methodology 
described in section 3.4.6 (based on Clayson and Curry, 1996 and Clayson et al. 2014). The 
SST at each 3-hourly interval is then determined following the methodology shown in 
Figure 8. At each grid point, sunrise and sunset times have been generated from the Navy’s 
sunrise/sunset algorithm (http://aa.usno.navy.mil/data/docs/RS_OneYear.php; see 
Section 3.4.5).  The files are named SEAFLUX-OSB-CDR_V02R00_SST_D$$_C$$.nc. 

 

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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Figure 7: Processing flow for creation of peak diurnal warming SST values. 
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Figure 8:  Processing flow for creation of final interpolated fields of SST. 
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3.2.3 Production of LHF and SHF 
Once the Qa, Ta, U10, and SST fields have been created, the final step is to 

calculate the fluxes. The flux parameterization used here is a neural network version of the 
COARE 3.0 algorithm (Fairall et al. 2003) that has been optimized for speed of use for 
processing. Further details of this algorithm can be found in Section 3.4.1. Prior to input to 
the neural network, U10 data greater than 45 m s-1 in the open ocean are set to 45 m s-1 to 
eliminate unverifiable values occurring outside the training data range for U10. See Section 
3.4.1 for a description of the heat flux neural network. 

Fluxes are available on the same grid and locations as the input fields of Qa, Ta, 
U10, and SST. The files are named SEAFLUX-OSB-CDR_V02R00_FLUX_D$$_C$$.nc. 

3.3 Algorithm Input 

3.3.1 Primary Sensor Data 
One set of satellite data used in this algorithm is collected by SSM/I instruments 

on board the DMSP satellites F08, F10, F11, F13, F14, and F15. Beginning in March 2008, 
additional data are included from the SSMIS instruments on board the DMSP satellite F17, 
with F18 beginning to contribute data in March 2010. The brightness temperatures used in 
these retrievals based on the SSM/I and SSMIS instruments are from the Colorado State 
University (CSU) Fundamental Climate Data Records (FCDR). Full information for the 
brightness temperatures and the SSM/I and SSMIS instrument characteristics can be found 
in the C-ATBD for that dataset (CDRP-ATBD-0337, Rev. 1 07/11/2013).  

Reynolds OISSTv2 sea surface temperature dataset is used both as a first-guess 
for the neural network retrievals of Ta, Qa, and U10, and also as the pre-dawn (and 
nighttime) value of the SST. This is a CDR, the Daily 1/4o Optimum Interpolation Sea 
Surface Temperature (OISST) CDR. Details on the OISST CDR can be found in CDRP-ATBD-
0303 (Rev. 2 09/17/2013). 

3.3.2 Ancillary Data 
Several ancillary datasets are used in the production of the final surface 

parameters. 

Precipitation is used as an input to the calculation of the diurnal SST warming 
(see Section 3.4.1). The precipitation used for this dataset is the Hamburg Ocean 
Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) data, version 3.2 until 
September 30, 1996. The data is distributed through the CM SAF Web User Interface at 
(http://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=HOAPS_V001). The DOI for 
this dataset is 10.5676/EUM_SAF_CM/HOAPS/V001. The 6-hourly composites are used to 
create the daily averages. Details about the HOAPS dataset can also be found in Fennig et al. 

http://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=HOAPS_V001


CDR Program Ocean Surface Bundle C-ATBD CDRP-ATBD-0578 
Rev. 2   06/03/2016 

A controlled copy of this document is maintained in the CDR Program Library. 
Approved for public release. Distribution is unlimited. 

23 

(2012) and Andersson et al. (2010). From October 1, 1996 until the present, the GPCP one-
degree daily precipitation data set (Huffman et al., 2001) is used. 

An additional input to the diurnal SST warming calculation is a peak solar 
radiation value. This is obtained from the GEWEX Surface Radiation Budget (SRB) Release-
3.0 data set until February 2000. This data are available from 
https://eosweb.larc.nasa.gov/project/srb/srb_table. This dataset is described in 
Stackhouse et al. (2011), and detailed information about the data can also be found at 
http://gewex-srb.larc.nasa.gov/common/php/SRB_about.php. The CERES-Syn1Deg-3H 
product (Ed3A; CERES 2016) is then used from March 2000 through November 2015. 
Details about this dataset can also be found at 
https://eosweb.larc.nasa.gov/project/ceres/syn1deg-day_ed3a_table. Due to the lag in 
production of the CERES-Syn1Deg-3H product, the NASA CERES FLASHFlux (Kratz et al. 
2014) product is used for the near-real-time data, currently beginning December 2015.   

The land mask used for this dataset is derived from the Global, Self-consistent, 
Hierarchical, High-resolution Geography Database (GSHHG), v 2.3.0, produced by the NOAA 
National Geophysical Data Center, retrieved 04/2014, available from 
http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html, and as described by Wessel 
and Smith (1996). 

The ice mask used for this dataset is derived from the ISCCP Snowice dataset, 
available from GEWEX. The data are daily sampled on a 0.25o, equal-area grid and are 
available from http://noaacrest.org/rscg/Products/GGEWC/snowice.html. The version 
used here has a release date of December 26, 2014. The data were mapped to the SeaFlux 
OSB CDR grid. The Snowice dataset runs through the end of 2013. After 2013, an ice mask 
based on the daily-averaged-ice mask for the last four years of available data (2010-2013) 
is employed. 

3.3.3 Derived Data 
Not applicable. 

3.3.4 Forward Models 
Not applicable 

3.4 Theoretical Description 
The software developed for the OSB CDR processing is a stepwise approach 

described in Section 3.2. Section 3.4.1 discusses the theoretical basis of the different 
techniques used to create the final CDRs. 

  

https://eosweb.larc.nasa.gov/project/srb/srb_table
http://gewex-srb.larc.nasa.gov/common/php/SRB_about.php
https://eosweb.larc.nasa.gov/project/ceres/syn1deg-day_ed3a_table
http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html
http://noaacrest.org/rscg/Products/GGEWC/snowice.html
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3.4.1 Physical and Mathematical Description 
Neural network estimation of Ta, Qa, and U10. The general form of equations 

for a neural network can be written as 

     

 

 (11) 

               

                                 (12) 

where yh is the value of a hidden neuron, xi is the input of the ith input neuron, zk is the 
output of the kth output neuron, NIN is the total number of inputs, NHID is the total number 
of hidden neurons, wih is the weight between the ith input and hth hidden neuron, whk is the 
weight between the hth hidden neuron and the kth output neuron, and α and β are bias 
weight parameters. 

For this analysis, the Tbs from all satellites were treated separately without 
concern regarding consistency across instruments because of intercalibration between 
satellites (Sapiano and Berg, 2013). Doing so allows for special handling of individual 
satellites, as with F08 where the noisy 85 GHz channels were omitted, and reduces errors 
by allowing for segregation based on clear and cloudy sky conditions. Further, there are no 
significant processing penalties incurred from using separate neural networks for each 
satellite. 

The training data for the neural network is from in situ measurements totaling 
several million samples. These in situ measurements are obtained from an extensive set of 
observations that make up the SeaFlux in situ dataset for F08-F15 and the ICOADS-value 
added dataset (IVAD) for F17 and F18. 

The SeaFlux dataset contains observations made from multiple field campaigns 
over the period 1988 – 2007. Information on the SeaFlux in situ dataset can be found in 
Curry et al. (2004). The in situ measurements were recorded from several different 
platform heights, depending on the research vessel or buoy. Measurements consisted of 
numerous atmospheric parameters such as wind speed, air temperature, specific humidity, 
and sea surface temperature among others. In an effort to standardize this dataset, log 
layer profile adjustments are used to adjust all atmospheric parameters to a standard 
height of 10 meters. Warm-layer/cool-skin adjustments are made to the sea surface 
temperature so that all SSTs would reflect a true “skin” temperature for purposes of 
stability calculations. These adjustments are made using the COARE 3.0 algorithm (Fairall 
et al., 2003). Following typical procedures for neural network training, the input and target 
data were randomly divided into three subsets: training, validation, and testing. 

IVAD data are used to train F17 and F18 because of limited overlap with the 
SeaFlux data record. F17 begins in March 2008, and F18 begins in March 2010, both after 
the SeaFlux data record has ended. IVAD observations offer the same heights-adjusted-
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atmospheric parameters as the SeaFlux data set, meaning both SSM/I and SSMIS satellites 
are comparably trained. Information for the IVAD data set can be found in Berry and Kent 
(2009, 2011). 

The neural network structure for each of the F10-F18 satellites includes 10 
inputs (seven Tb channels, SST, CLW, and earth incidence angle or EIA) and five targets 
(SST, Ta, Qa, U10, and PW) that are modeled using two hidden layers. For each satellite, 
inputs and targets are grouped depending on sky conditions—either clear (CLR) or cloudy 
(CLD)—depending on the value of CLW: values less than 0.0257 kg m-2 for CLR and all 
other values for CLD. The number of neurons in each hidden layer varies for the specific 
satellite and sky conditions resulting in two neural networks for each of the F10-F18 
satellites. 

Satellites F17 and F18 make use of the 91 GHz channel of the SSMIS instruments 
instead of the 85 GHz channel on SSM/I instruments. This change requires that the vertical 
and horizontal 91 GHz channels are mapped to 85 GHz equivalents prior to calculation of 
CLW (Yang and Weng, 2008). The mapping is only done to calculate CLW, and Tb data from 
the 91 GHz channels are used otherwise. 

The neural network structure for the F08 satellite includes six inputs (five Tb 
channels and SST—both 85 GHz channels are omitted along with CLW), the same five 
targets as the F10-F18 neural network, and two hidden layers. Segregation based on sky 
conditions, as was done for the F10-F18 satellites, is not possible because CLW calculation 
depends on the horizontal 85 GHz channel that is omitted due noise. The result is a single 
neural network for the F08 satellite. 

Rather than apply a normalization for the Earth Incidence Angle (see Berg et al. 
2013 for a description of the causes and variability of the EIA; Hillburn and Shie 2011), the 
EIA is used as an input to the neural network. 

Training was completed using the Matlab neural network toolbox. The final 
network structure was chosen based on optimization of error characteristics across nearly 
1800 different combinations of hidden layers and neurons, while considering training data 
for each satellite and both sky conditions (except for F08) separately. Thus all neural 
networks have different weightings and number of neurons in their hidden layers. 

Output from each neural network are compared to nonphysical values for each 
of the five targets, with values judged unrealistic filled as missing. Any values outside the 
following ranges are deemed nonphysical: [-2, 35] oC for SST, [-90, 55] oC for Ta, 
[0, 100] g kg-1 for Qa, [0, 100] m s-1 for U10, and PW < 0. 
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Flux parameterization. The flux parameterization used here is a neural 
network version of the COARE 3.0 algorithm (Fairall et al. 2003) that has been optimized 
for speed of use for processing. The COARE 3.0 algorithm (and the resulting neural network 
algorithm) use the standard bulk formulae for calculation of LHF and SHF: 

                                                                                                   (13) 

                                                                                           (14) 

where ρ is the air density, Ce and Ch are the moisture and heat exchange coefficients, 
respectively, Lv is the latent heat of vaporization, Cp is the specific heat capacity of water, Qs 
is surface specific humidity, Qa is air specific humidity, Ts is sea surface temperature, Ta is 
air temperature, and U10 is the 10 meter wind speed. Positive fluxes are denoted as from 
the ocean to the atmosphere. The COARE 3.0 algorithm uses the input variables of SST, Qa, 
Ta, and U10 to calculate the moisture and heat exchange coefficients. Technically, the wind 
term should be U10 – Us (with Us being the surface current); in this dataset we assume Us 
= 0. 

The neural network was trained using turbulent latent and sensible heat fluxes 
computed from the COARE 3.0 algorithm for a range of input wind speeds of 0 to 45 m s-1, 
near-surface specific humidities of 0 to 30 g kg-1, saturation specific humidities of 0 to 
30 g kg-1, sea surface temperatures of -2 to 35 oC, and near-surface air temperatures of -30 
to 40 oC. The combined parameter space was sampled using a Latin hypercube to generate 
random samples that are also uniformly distributed across the entire sample space. The 
resulting latent and sensible heat fluxes span ranges of -7000 W m-2 to 7100 W m-2 and -
3100 W m-2 to 6500 W m-2, respectively.  

Neural network emulation was tested against fluxes evaluated directly from 
COARE reproducing the latent heat fluxes with a Gaussian error distribution, a correlation 
coefficient of 1.000, a bias of 0.00037 W m-2 and a root-mean-square error of 0.103 W m-2. 
The sensible heat flux also has a correlation coefficient of 1.000, a bias of 0.00003 W m-2, 
and a root-mean-square error of 0.049 W m-2. These errors in emulation are less than the 
stated accuracies of the COARE 3.0 algorithm.  

The neural network emulator for the COARE model was also trained using the 
Matlab neural network toolbox. The final structure for the five input, two output neural 
network–two hidden layers with 83 neurons in the first and 20 in the second—was found 
through optimization of error characteristics across nearly 1800 different combinations of 
hidden layers and neurons. 

The heat fluxes produced by the neural network are limited to [-50, 500] W m-2 
for latent heat flux and [-300, 1500] W m-2 for sensible heat flux. Values outside this range 
are considered unrealistic and are thus filled as missing. 
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3.4.2 Data Merging Strategy 
The Qa, Ta, and U10 fields are determined based on the neural network retrieval 

strategy at the satellite swath level. The data is binned into 3-hourly bins, collecting all data 
from all available satellites into the quarter-degree grid. An overview of this procedure is 
shown in Figure 5. These individual estimates are then averaged across all of the 
appropriate time, location, and satellites onto the 3-hourly temporal (first) and quarter-
degree grid (second). The 3-hourly grid contains averages over the periods [00Z – 03Z), 
[03Z – 06Z), etc. 

3.4.3 Numerical Strategy 
Model-Based Interpolation technique. The Model-Based Interpolation (MoBI) 

procedure used for interpolation in this dataset is based on the following methodology. 
This dataset uses version two of the Modern Era Retrospective-analysis for Research and 
Applications (MERRA-2; Bosilovich 2008) to determine the model-based tendencies that 
are integrated. The tendencies are produced from consecutive model time steps that take 
into account the state of the atmosphere and physical and dynamical processes such as 
radiation and advection. The tendencies are weighted such that the satellite-based 
observations are matched exactly when available. That is, MoBI is an exact interpolation 
scheme, tied to the satellite retrieval estimates. The method relies on knowledge at two 
samples in time of both satellite and model estimates bracketing a single or series of 
unobserved time steps. Let these two known points in time at the beginning and end of a 
series be denoted t=A and t=B, respectively. Then the difference between the satellite (S) 
and model (M) estimates, Δ, at A and B can be defined as 

ΔA = SA – MA 

ΔB = SB – MB. 

Forcing the estimated field, X, at the end points to match the satellite observation 
exactly, the analysis equations at these points become 

XA = MA + ΔA 

XB = MB + ΔB. 

To estimate the unknown observations at time steps, t, between the known 
boundaries, the model difference between time t, Mt, and the model boundary, MA or MB, 
can be used to estimate the intermediate point in the forward, 

Xt = XA +[Mt – MA] = Mt + ΔA 

or backward 

Xt = XB -  [MB – Mt] = Mt + ΔB 

directions. As shown, the formalism of adding model-driven time evolution to known 
satellite observations is equivalent to bias-adjusting the model evolution at both the 
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boundary and unobserved samples. While the model estimates are fully consistent between 
the model boundary and intermediate samples, the adjustment of the boundaries to the 
satellite values can result in a mismatch at the boundaries of the forward and backward 
steps. To smoothly merge between points, a convex combination is used that linearly 
interpolates over the time interval between the known boundary points as 

Xt = Mt +ΔA + (n/N ΔB – n/N ΔA) = Mt + (1-f) ΔA + (f) ΔB 

where n is the number of samples from the known time A over the total number of samples, 
N, encompassed from A to B. That is, f =n/N represents the normalized (i.e. fractional) time 
over the interval. The final analysis equation results in an exact interpolation at the 
boundaries to the retrieved satellite quantity. For each time sample, A and B were limited 
to 60 days, i.e. the MoBI procedure searched 60 days before and 60 days after for model 
and observation data to use for interpolation. As formulated, no assumptions of stationarity 
or estimation or error covariances or structure functions are needed. The only weighted 
averaging of MoBI occurs through the weighted average of the bias-adjustment to be 
applied at every time step, which results in an exact interpolation to the satellite 
observations at each time a satellite observation is available and to a nearly unbiased 
estimate (with respect to the satellite observations) at intermediate analyzed estimates. 
Further details can be found in Clayson et al. (2014). 

Any nonphysical realizations (see Section 3.4.1) returned by the MoBI procedure 
are filled with missing and flagged appropriately as having failed interpolation. 

3.4.4 Calculations 
Details on the processing steps involved in the algorithm are provided in Section 

3.2. 

3.4.5 Look-Up Table Description 
Only production of SST uses data that has been calculated and stored in a static 

look-up table. The time of sunrise and sunset for each location of the 0.25o output grid are 
stored in the NetCDF SunriseSunset.nc. Sunrise and sunset times are used first to calculate 
the daily peak solar radiation for the peak diurnal warming (Figure 7), and then to produce 
the two-day model of diurnal variability leading to the final SST CDR (Figure 8). 

3.4.6 Parameterization 
Sea surface temperature diurnal warming. The peak diurnal warming for 

each grid location at each time step is determined by the following methodology. The one-
dimensional second moment turbulence closure ocean model of Kantha and Clayson (1994, 
2004), modified to include a parameterization of the highly stable surface layer. The model 
includes the skin surface temperature parameterization of Schluessel et al. (1997), the 
effects of precipitation, and the effects of the diurnal thermocline. To make use of this skin 
model, the uppermost level of the model is set at 1 cm. The vertical resolution is then set to 
every 0.1 m over the upper 50 m. The temporal resolution is 15 minutes. 
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This model has been run for 100,000 four-day simulations with variable inputs 
of (a) peak solar radiation with values ranging from 0 to 1300 W m-2;  (b) daily mean 
precipitation with values ranging from 0 to 1.0 x 10-5 m s-1; (c) lengths of day with values 
ranging from 0 to 24 hours; (d) wind speeds ranging from 0 to 10 m s-1; and (e) SSTs 
ranging from -3 to 38 oC. The combined parameter space was sampled using a Latin 
hypercube to generate random samples that are also uniformly distributed across the 
entire sample space. The diurnal warming for each of these simulations is taken from the 
fourth day of simulations as the difference between the maximum and minimum values.  
This database of 100,000 dSST values and their corresponding winds, solar radiation, 
precipitation, SST, and length of day are then provided as input to a neural network 
emulator. This methodology was used by Clayson and Curry (1996) and Clayson and 
Weitlich (2007) and more details can be found in these references. 

Neural network emulation was tested against dSST evaluated directly from the 
original model reproducing the peak diurnal warming with a correlation coefficient of 
0.9562, a bias of -0.0071 oC, and a root-mean-square error of 0.2819 oC. These errors in 
emulation are acceptable for the model 

Peak diurnal warming data come from running the neural network emulator 
with inputs from (a) GEWEX SRB for peak solar radiation; (b) HOAPS for daily mean 
precipitation; (c) the sunrise/sunset lookup-table in the file SunriseSunset.nc for length of 
day (see Section 3.4.5); (d) SEAFLUX OSB CDR Ocean Near-Surface Properties for daily 
average wind speed; and (e) Reynolds OISSTv2 for SST. Peak solar radiation were found 
through three-dimensional interpolation of the 3-hourly GEWEX data to the 0.25o output 
grid for 24 hours. The maximum value at each location for each day was input to the neural 
network as the peak solar radiation. Daily mean precipitation were interpolated to the 
0.25o output grid prior to input to the neural network. 

Output of the final SST product are compared to nonphysical values as before 
with the atmospheric parameters. Any values outside of [-2, 35] oC are judged unrealistic 
and filled as missing. 

3.4.7 Algorithm Output 
The primary output fields are the 3-hourly, 0.25o x 0.25o Qa, Ta, U10, SST, and 

LHF and SHF fields. The NetCDF filenames are SEAFLUX-OSB-CDR_V02R00_{ATMOS, SST, 
FLUX} _D<YYYYMMDD>_C<YYYYMMDD>.nc, where D<YYYYMMDD> is the date of the data 
contained in the file and C<YYYYMMDD> is the create date of the file. The total file size for 
all three data products is 593 gigabytes and can be downloaded from 
http://www.ncdc.noaa.gov/cdr/operationalcdrs.html. 
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4. Test Datasets and Outputs 

4.1 Test Input Datasets 
None. 

4.2 Test Output Analysis 

4.2.1 Reproducibility 
None 

4.2.2 Precision and Accuracy 
See Section 4.2.3 for all estimates of errors. 

4.2.3 Error Budget 
In a previous version of this dataset, SeaFlux V1.0, a significant effort was made 

to estimate uncertainties by comparison with in situ flux measurements from research 
vessels and the bulk parameters from ships of opportunity data sets. This methodology and 
results are outlined here. The version of the dataset described in this C-ATBD, the SeaFlux 
OSB CDR Version 1, retains nearly all of the original methodology with the following 
exceptions: (1) incorporation of additional SSM/I satellite data to extend the dataset back 
to 1988 with resulting changes in weights to the neural nets for the retrieval of the swath-
level Ta, Qa, and U10; (2) the use of the SeaFlux OSB CDR Version 1 winds for U10 and as 
input to the fluxes instead of the Cross-Calibrated Multi-Platform Ocean Surface Wind 
Vectors (CCMP) CCMP winds to provide internal consistency to the dataset; (3) re-
calculated weighting for the neural network algorithm of the COARE 3.0 resulting in 
reduced errors in the extreme flux values; (4) an improved ice mask instead of the 
Reynolds ice mask; and (5) re-calculated weighting for the diurnal SST parameterization to 
provide better error characteristics relative to the original model. The errors shown in this 
version of the C-ATBD relate to the SeaFlux V1.0 dataset, and further details of that dataset 
and error analysis is discussed in Clayson et a. (2014).  There are several potential sources 
of uncertainty of the estimation process. The first is the random uncertainty, whose 
influence in the total uncertainty can be reduced by increasing the size of the space/time 
average. Another is the systematic uncertainty, which does not reduce upon averaging data. 
Both of these uncertainties are calculated for the dataset and described here, and are 
summed for the total uncertainty. A further type of uncertainty is the sampling uncertainty. 
However, the comparisons that are used for calculating the errors use the interpolated data 
set, and as such represent some of the effects of the lack of sampling the full globe by the 
satellite sensors. Other sampling issues could include variability that occurs on a less than 
three-hourly time scale, which is not being resolved by the satellite dataset. These errors 
would not affect the instantaneous fields, but could possibly reflect on the daily and longer 
time scale averages.  
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In order to understand the error characteristics, a set of comparisons is 
performed with the ship-of-opportunity International Comprehensive Ocean-Atmosphere 
Data Set ICOADS)-value added dataset (IVAD) based upon the ICOADS data containing 
adjustments for height and known biases (Berry and Kent 2009, 2011). The IVAD data 
contains only measurements of the bulk parameters; no direct covariance flux estimates 
are provided, so that the comparisons here are limited to the bulk parameters only. This 
dataset is provided at the time and location of measurement. For these comparisons the 
IVAD dataset are binned into the SeaFlux 3-hour bins and the SeaFlux grid. The number of 
data points available for comparison with the IVAD data set is roughly ~5.07 x 106. 
Comparisons of the SeaFlux V1.0 dataset with the available IVAD in situ data are shown in 
Figure 9. 
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Figure 9: Comparisons between SeaFlux satellite-derived dataset and IVAD 
data for the component fields. 
 Colors indicate density of data (varying linearly from dark blue representing 
less than 6000 points to red indicating 60000 or more points). line indicates 
1:1 
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The systematic and random components of the uncertainty for each of the 
individual components of the fluxes (wind speed, air temperature and humidity, and SST) 
are calculated first. In order to determine the bias and standard error of each gridded value 
at each 3-hour time step, all of the matchup data is binned and errors are calculated for 
each bin. Binning is performed based on the satellite observation of that value, rather than 
the IVAD, so that an error can be calculated using solely each satellite observation. The 
error characteristics of most of the components were at least weakly a function of two 
parameters. For air temperature, error characteristics depended on the air temperature 
and the air-sea temperature difference. The specific humidity error was a function of both 
near-surface specific humidity and the air-sea humidity difference. The wind speed errors 
were correlated with both the estimated wind speed and the air-sea temperature 
difference. Only the SST errors were computed as solely a function of the SST itself. The 
systematic uncertainty is here defined as the bias of the satellite observation within each 
bin, and the random uncertainty is here defined as the standard error within each bin.  

The bin intervals were chosen based on the variability of the error 
characteristics and the amount of data available for that bin. Thus, the bin intervals are 
very large at the tails of the distributions, such that each bin has at least 150 samples. For 
example, to attain 150 samples for all values of air-sea temperature differences as a 
function of wind speed, the highest wind speed bin contains all wind speeds greater than 
22 m s-1. In addition, for the further calculation of the uncertainties for the fluxes, the air-
sea temperature and humidity difference uncertainties were also determined. The air-sea 
temperature difference error was a function of both the temperature difference and the 
wind speed; similarly the air-sea humidity difference error was a function of both the air-
sea humidity difference and the wind speed. Once the standard deviations for each bin 
were determined, values greater than three standard deviations from the mean are tagged 
as outliers and removed from the analysis. The mean bias and standard deviations are then 
re-calculated. This step is performed in order to provide a more consistent RMS error 
amongst the bins, in order to remove the types of statistical artifacts as shown by Kent et al. 
(1998) in comparing satellite and ship winds.  

Error characteristics for a representative sample of the ranges for each 
component are shown in Figure 10. The SST error characteristics are fairly similar across 
the SST domain, although there is a definite trend towards overestimation of the SST as the 
SST increases. The SSTs in the IVAD dataset are unadjusted for depth, measurement 
methodology, or time of day. During nighttime, the difference between a skin temperature 
and a measurement at some nominal depth in the upper ocean will be relatively close as 
the ocean is typically substantially mixed (except for the skin effect; Fairall et al. 1996), 
whereas during the daytime depending on the depth of the measurement there can be a 
difference of up to several degrees due to diurnal warming. An analysis of the errors at 
SSTs greater than 30 oC shows that mean nighttime differences are only a few tenths of a 
degree; during the late morning through early evening however the mean differences are 
roughly 1.5 oC. This variability is much reduced at colder temperatures, which may see 
mean differences of 0.1 oC or less across the daytime/nighttime comparisons. For the error 
analysis the bias value as shown in Figure 10 is kept though it is most likely more 
conservative than the actual error. 
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Figure 10: Differences between the SeaFlux v1.0 satellite dataset and the IVAD 
measurements as a function of the satellite values. 
Circles indicate the mean bias in that bin, with standard deviations denoted by 
the bars.  

 

 

 



CDR Program Ocean Surface Bundle C-ATBD CDRP-ATBD-0578 
Rev. 2   06/03/2016 

A controlled copy of this document is maintained in the CDR Program Library. 
Approved for public release. Distribution is unlimited. 

35 

The trend in wind speed with increasing wind speed is more apparent. The 
decrease in standard deviation values at low wind speeds is unsurprising given the hard 
limit at 0 m s-1. The increased error at low wind speeds when comparing satellite winds to 
ship observations is common; at such low wind speeds convective cells can dominate 
surface winds with much smaller footprints than the satellite footprint. It should be noted 
that there are very few (122) wind speeds below 1 m s-1 in the IVAD dataset available for 
matchup.  This has been noted by others performing similar comparisons (e.g. Mears et al. 
2001) and is not necessarily indicative of an actual increased error in the wind fields. Given 
the trends shown in the data, it is likely then that the magnitude of the biases are 
overestimated at the low wind speeds and underestimated at very high winds, but without 
additional data this is the best definition that can be provided.    

Error characteristics of both the air temperature and specific humidity were 
dependent on the retrieved air temperature and humidity and also the temperature and 
humidity near-surface vertical difference. The Qa errors for the bin of humidity difference 
that contained the mean humidity difference value (Qs - Qa = 4.0 g kg-1) are much less than 
1 g kg-1 for Qa values between roughly 5 and 25 g kg-1; as Qa drops to zero the error 
increases, as it does at the Qa value increases above 23 g kg-1, a very rare occurrence. To 
the extent that on average the humidity increases with the SST, and given that the SST is an 
input to the humidity retrieval, it is possible that some of this trend is a result of the similar 
trend towards overestimation of SST at high SSTs. Little or no trend is apparent in the Qa 
retrieval at the more extreme values of Qs - Qa, which may reflect conditions under which 
the atmosphere and ocean are less coupled and the input SST had less weight in the 
retrieval. It should be noted that the error characteristics shown for the Qs-Qa values of -
5.5 g kg-1 and 23.0 g kg -1 are well within the tails of the humidity difference distribution 
and represent less than 0.01% of all the data.  

The air temperature errors for the Ta values near their mean of 1.3 oC have little 
trend over the temperature scale, which may be due to the fact there is a slight tendency 
for overestimation of the air temperature at the higher air temperatures (which may again 
be related to the overestimation of SST trends). Interestingly at air-sea temperature 
differences at the tails of those distributions the trends are opposite: for extremely stable 
conditions the retrieved Ta on average becomes increasingly overestimated, while for 
unstable conditions the retrieved Ta becomes increasingly underestimated for increasing 
Ta. As with the Qa comparisons, these temperature differences represent less than 0.01% 
of the data, and are shown here to demonstrate the possible range of observed biases. 

Similar analyses for the humidity and temperature differences are also shown. 
The wind speed dependence on the error characteristics of the humidity difference are 
small but increase as the difference increases. In general, the bias and standard deviation of 
the Qs-Qa error are within 1 g kg-1 until Qs-Qa becomes larger than about 10 g kg -1. Then 
there is an increasing overestimation of Qs, underestimation of Qa, or both, as the 
difference continues to increase. SST errors have been shown to be on the order of 1 oC, 
which at a temperature of 35 oC corresponds to an overestimation of roughly 2 g kg-1. 
Conversely, Qa has been shown to be more susceptible to underestimation in regions of 
high Qa due in part to saturation of the microwave channels (Roberts et al. 2010).  
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Over the 10 years of the SeaFlux version 1.0 dataset, the mean global total 
uncertainty in Ta is 0.35 oC, and the mean global total uncertainty in SST is 0.12 oC. 

The wind speed uncertainties are highest in regions with chronically low winds, 
such as the tropical Indian and western Pacific Oceans, but remain everywhere below 
approximately 1 m s-1. Uncertainties are also higher in regions that experience periods of 
low wind speeds, as the uncertainty is higher at low wind speeds, even if the overall mean 
of the wind speeds are higher in these regions. The mean wind speed uncertainty is 
0.39 m s-1. The specific humidity is below 1 g kg-1 nearly everywhere, with exceptions in 
regions that have high Qs-Qa values through some or all of the year, most notably the 
northern Bay of Bengal and Arabian Seas and over the Kuroshio Current. These are two 
regions where numerous satellite products significantly underestimate Qa as found in 
Prytherch et al. (2013). The mean Qa uncertainty is 0.45 g kg-1. 

The uncertainties in the fluxes are a result of the errors in the input data and 
errors in the physical model used to compute the turbulent fluxes from these mean values. 
Using basic sampling theory and propagation of errors (Taylor, 1982), the uncertainties in 
the fluxes for each grid point at each 3-hour time step take the form: 

 
  

where F is the flux, x and y are input variables, rxy is the correlation coefficient between x 
and y, and sx and sy are the total uncertainties in x and y, given by: 

 

where sys and ran refer to the systematic and random components, respectively. N is the 
number of data points in the collection (for each 3-hour realization at each point is 
considered one observation). The input variables to the calculation of the LHF are: CE (the 
moisture transfer coefficient), U10 (the wind speed), and (Qs - Qa). The input variables to 
the calculation of the SHF are CH (the heat transfer coefficient), U10, and (SST-Ta). The total 
uncertainty for each of the fluxes is thus estimated as: 

 

 

where Cpa is the specific heat of air, Lv is the latent heat of vaporization, and ra is density of 
air. Over the 10 years of the SeaFlux version 1.0 dataset, the mean total uncertainties for 
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the LHF and SHF are 6.2 W m-2 and 5.2 W m-2. The spatial distributions of the errors in the 
surface input fields and the fluxes are shown in Figures 11 and 12. Further details can be 
found in Clayson et al. (2014). 

 

Figure 11: Mean fields from the 10 years of SeaFlux version 1.0 data for the Ta, 
SST, Wspd, and Qa values and the associated total uncertainties. 
Note the factor of 10 difference in the uncertainties between the Ta and SST 
fields. 
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Figure 12: Mean fields from the 10 years of SeaFlux data for the Qs-Qa, LHF, 
SHF, and Ts-Ta values and the associated total uncertainties. 
Contour lines on the Qs-Qa total uncertainty plot is at 0.5 g kg-1. Contour lines 
on the LHF and SHF plots are at 100 and 35 W m-2, respectively. Contour lines 
on the LHF and SHF uncertainty plots are at 15 and 10 W m-2, respectively. 
Contour lines on the Ts-Ta plot are at 0 oC and on the Ts-Ta total uncertainty 
plot are at 1.0 oC. From Clayson et al. (2014). 
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5. Practical Considerations 
The source code was written in Matlab. Whenever possible, the source code 

takes advantage of built-in functions. Each driver file denotes Matlab release version used 
to construct the source code–R2014a in this case–and any toolboxes required to run the 
code. Toolboxes in Matlab are equivalent to libraries in other languages. 

Matlab is (generally) backward compatible. The code is expected to build 
independent of the platform or release version. The source code, however, will not build if 
the user does not have the required toolboxes noted in the header for each file. 

Matlab toolboxes need to build the source code are: mapping, neural network, 
statistics, and signal processing. 

5.1 Numerical Computation Considerations 
The various algorithms take advantage of parallelization when possible. When 

the parallelization toolbox from Matlab, the native development language, is available, the 
source code will adapt and use the parallelization. Should parallelization be available, but 
the user’s preference is to not parallelize, this feature is easily disabled at the beginning of 
the source code. 

The MoBI scheme–the third processing step for the atmospheric surface 
parameters–cannot be parallelized because of sequential dependence. Filling missing data 
consequently takes significant cpu cycles to process the entire data record. 

When possible, source code takes advantage of matrix algebra. This is standard 
practice in Matlab and should pose no problems. Matrix algebra is preferred to improve 
performance, improve coding logic, and reduce introduction of bugs. 

Conversion between different data types–single and double precision, integer, 
etc.–results in round-off errors in computation. This is expected due to the incorporation of 
several different observation and model products in producing the final data set. In general, 
data are handled in their encoded format (usually single precision) until calculations 
require converting to double precision to combine with other data. The round-off errors 
are within reason for the algorithm. 

5.2 Programming and Procedural Considerations 
Source codes for this CDR were written following the “General Software Coding 

Standards” for the CDR program. All code follows standard practices acceptable for the 
development language–Matlab–and were written to take advantage of built-in functions 
whenever possible.  

The source code for each CDR are broken into phases that correspond to each 
step of the process flow diagram (see Figure 1, for instance). Source code are organized 
around a naming structure to assist the user. The atmospheric surface parameters, for 
example, require three processing steps: Swath, Grid, Interp. Each step has a corresponding 
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driver file–denoted by the prefix “SEAFLUXNN_”, as in SEAFLUXNN_Swath. Functions 
associated with each step of the processing carry the prefix denoting the parent driver file–
as in Swath_CLWSSMI. This parent-child relationship allows the user to follow the flow of 
the source code. 

Each driver file has an initialization section where the user can prescribe the 
input/output directories for the various data files required for each step of processing. This 
should be the only modification required by the user. 

Whenever possible, object-oriented-programming techniques were employed. 
This includes passing objects between functions, organizing variables, controlling the flow 
of data, and interfacing with NetCDF. Object-oriented programming, considered standard 
practice and preferred in Matlab, is especially helpful for code involving many lines, 
multiple functions, and multiple input/output steps, as is the case for this CDR. 

To reduce processing time, the source code was written to loop through each 
day either in serial or parallel. This approach offers two advantages: 

· Users can run multiple instances of the source code simultaneously. 

· Output can then be generated for a single day or a specified range. 

5.3 Quality Assessment and Diagnostics 
Sanity checks, both visual and empirical, were employed frequently as diagnostic 

measures. These measures included: 

· Comparison of neural network output with SeaFlux in situ observations. 

· Comparison of atmospheric surface parameters with MERRA values. 

· Inter-comparison of neural network output and error distribution across the different 
SSM/I satellites. 

To improve neural network performance, the F08 SSM/I satellite was treated 
separately due to extensive noise in the 85 GHz channel. Performance of the F08 satellite is 
only slightly degraded compared to the other five SSM/I satellites. 

SSM/I Satellite F15 was subject to significant contamination after August 2006 
due to the activation of the RADCAL correction. Observations for this satellite were omitted 
after the correction was activated. For more information, see the CSU-FCDR documentation 
where the authors note that observations during this period are “unsuitable for climate 
applications.” 

SSMIS sensor failure in the 37 GHz channel occurred for the F17 satellite after 
March 2016. Observations for this satellite were omitted after failure. 

SSMIS satellites F16 and F19 satellites were also considered for inclusion. The 
F16 satellite suffered calibration issues shortly after launch. The F19 satellite failed after 
February 2016. Neither satellite was used in creation of this data set. 
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Appropriate quality flags included with the different data sets were employed 
during the different stages of processing. 

5.4 Exception Handling 
Matlab includes extensive debugging functions. Most errors are handled through 

these built-in functions. This is standard practice when programming in Matlab. The source 
code are written to take advantage of the native debugging by employing coding strategies, 
such as preallocating matrices using the value “Inf” (infinity) instead of a numeric value to 
invoke an error if the value is not replaced as expected. 

For errors involving a breakdown in logic or calculations, the source code return 
error-specific information to the user. Aside from input/output considerations and toolbox 
requirements, the user should not encounter build errors. 

5.4.1 Conditions Checked 
The primary error when building the source code involves input/output 

directories. Each driver file begins with several lines to specify the input and output 
directories. Following the comments in the source code, the user should modify accordingly 
the directory paths based on their system. An error is returned if the user specifies a 
directory that is empty or for which they do not have write privileges. 

Toolbox requirements are also checked by the source code. An error will occur if 
there is no access to the required toolboxes. The user is encouraged to check the toolbox 
list above to ensure the code will build. 

Memory considerations are handled internally by Matlab. Appropriate 
information is returned to the user if such errors occur. The source code was written to 
avoid overloading memory. 

5.4.2 Conditions Not Checked 
Error handling for function and sub-function argument lists is handled internally 

by Matlab. When appropriate, argument lists are checked as part of a stand-alone function. 
This should not affect the user because the source code is self-contained, requiring only the 
augmentation and building of the driver files. 

5.4.3 Conditions Not Considered Exceptions 
Missing data are denoted with various quality flags. The following cases are not 

considered erroneous: 

Locations over land or lakes are considered contaminated and filled as missing. 

Satellite locations for brightness temperature within 45 km of land are 
considered contaminated and are thus discarded. 

Locations over sea ice are considered contaminated and filled as missing. 
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Nonphysical values returned by the neural networks for atmospheric 
parameters (e.g., negative wind speed; see Section 3.4.1) are filled using the MoBI scheme. 

Locations with missing source data or for which the neural network output are 
outside the operating range (e.g., negative wind speed) are filled using the MoBI scheme 
(Section 3.4.3). When MoBI fails to interpolate a value, or returns a nonphysical value (see 
Section 3.4.1), the data are filled as missing with the appropriate quality flag. 

Accuracy for high-wind-speed locations (i.e., U10 > 45 m s-1) near sea ice cannot 
be verified and are therefore filled as missing because of potential ice contamination. These 
locations are flagged as sea ice. 

Nonphysical values returned by the SST processing (see Section 3.4.6) are filled 
with missing. 

Unrealistic values returned by the FLUX processing (see Section 3.4.1) are filled 
as missing. 

Several steps of the processing rely on colocation of one data set to another. 
When a suitable colocation cannot be found, the data are marked as missing and filled using 
MoBI. 

5.5 Algorithm Validation 
Validation of the algorithms used to calculate this dataset can be found in their 

respective published papers as outlined in the various sections of this document. 

5.5.1 Validation During Development 
The neural network for atmospheric parameters was trained using the extensive 

SeaFlux in situ observation data record. Neural network structure was chosen based on 
optimization of error characteristics across almost 1800 different combinations. 
Performance of the atmospheric parameter neural network was compared with that of 
Roberts et al. (2012). Comparison included visual comparison of error characteristics and 
direct comparison of empirical values such as root-mean-square error, bias, and 
correlation. 

Random instantaneous and averaged maps were compared with MERRA spatial 
patterns for congruity during the processing. 

5.6 Processing Environment and Resources 
Build time for the source code varies depending on parallel processing 

capabilities. All processing, except for the third processing step for atmospheric 
parameters (Figure 6), can be completed on a single processor with similar specifications 
as Table 2 in approximately 10 days. 
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As noted above, filling missing data with the MoBI scheme (step three in 
processing the atmospheric parameters; see Figure 1) accounts for the majority of 
processing time and requires approximately 40 days to complete using 12 processors. 

Temporary storage is required during the first and second steps of processing 
for atmospheric parameters, and during the first step of processing for SST. (See processing 
flow diagrams in Figure 1 and Figure 2.) Total size of temporary storage is less than 250 GB 
and can be reduced through file management as each step is completed and files are no 
longer needed. 

Table 1:  Processing Environment. 

Memory  512 GB 

Processor Four hexacore Intel E5-Xeon @ 3.4 
GHz 

Programming 
Language 

Matlab R2012b (64-bit) 

External Libraries None 
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6. Assumptions and Limitations 

6.1 Algorithm Performance 
Data produced in this CDR are constrained by the availability of multiple 

observations and data products. Reproduction and extension of the temporal record are 
therefore limited by continued access and service of input data products. Should input data 
become inaccessible or unsupported in the future, an acceptable replacement would have 
to be sought. All data used in initial production of the CDR are available and up to date. 

 

6.2 Sensor Performance 
Assumptions about the sensors are made by the input data providers, who apply 

their algorithms to compute brightness temperatures, SST, precipitation, radiation, and ice 
characteristics. 
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7. Future Enhancements 

7.1 Enhancement 1: Reprocessing 
As new and improved versions of the input satellite datasets, including the 

SSM/I and SSMIS brightness temperatures, are produced, new versions of the data set 
could be re-run including these improvements. 

7.2 Enhancement 2: Extend Temporal Record 
Inclusion of the SSMIS series of satellites would extend the CDR temporal record. 

A new neural-network-weighting algorithm would have to be performed for those 
satellites. But otherwise the processing stream would remain the same. 

7.3 Enhancement 3: Improved Parameter Values 
The inclusion of additional satellites, AMSU and AMSR for example, may improve 

near-surface temperature and humidity. Doing so would require a new neural-network-
weighting algorithm. Otherwise the processing stream would remain the same. 

7.4 Enhancement 4: Reduced Temporary Storage 
At present, production of atmospheric parameters occurs in three steps (see 

Figure 1). Under this multi-phase processing approach, each phase is manageable in length 
and runtime. These advantages come at the cost of temporary storage requirements that 
could be reduced or eliminated in the future. 

7.5 Enhancement 5: Smoother Ice Mask 
The GEWEX ice mask is available on an equal-area grid. Conversion to the equal-

angle (regular) grid used in this CDR resulted in a coarser ice mask than is preferred. 
Differences are insignificant from an empirical standpoint, but a smoother ice mask would 
reduce the runtime of the MoBI scheme (step three in Figure 1). 
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Appendix A. Acronyms and Abbreviations 

Acronym or 
Abbreviation 

Definition 

ANSI American National Standards Institute 

AVHRR Advanced Very High Resolution Radiometer 

C-ATBD Climate Algorithm Theoretical Basis Document 

CCMP Cross-Calibrated Multi-Platform 

CDR Climate Data Record 

COARE Coupled Ocean Atmosphere Response Experiment 

CSU Colorado State University 

FCDR Fundamental Climate Data Record 

FOC Full Operating Capability 

GEWEX Global Energy and Water Experiment 

GSHHG Global Self-consistent, Hierarchical, High-resolution Geography 

HOAPS Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data 

IEEE Institute of Electrical and Electronic Engineers 

ICD Interface Control Document 

ICOADS International Comprehensive Ocean-Atmosphere Data Set 

IOC Initial Operating Capability 

ISCCP International Satellite Cloud Climatology Program 

IVAD ICOADS Value-Added Dataset 

MERRA Modern-era Retrospective Analysis for Research and Applications 

MERRA-2 Modern-era Retrospective Analysis for Research and Applications; version two 

MoBI Model-Based Interpolation 

NCDC National Climatic Data Center 

NOAA National Oceanic and Atmospheric Administration 

OAD Operational Algorithm Description 

OCDR Oceanic Climate Date Record 

OISST Optimum Interpolation Sea Surface Temperature 

SRB Surface Radiation Budget 

SSM/I Special Sensor Microwave/Imager 

SSMIS Special Sensor Microwave/Imager Sounder 
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Appendix B. Quality Control Flags for Atmospheric 
Parameters 

Flag Value Flag Meaning Explanation 

0 Observation Value from neural network 

1 Interpolation Value from model-based interpolation 

2 Snow/Ice Snow or ice contamination 

3 Land Over land 

4 Lake Over lake 

5 Failed Interpolation Model-based interpolation failed 

 

Grid cells for flags with value 2, 3, 4, or 5 are filled as missing where appropriate. 
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Appendix C. Quality Control Flags for SST 

Flag Value Flag Meaning Explanation 

0 Observation Value from neural network 

1 Unused Unused flag 

2 Snow/Ice Snow or ice contamination 

3 Land Over land 

4 Lake Over lake 

5 SST Missing SST unresolved 

 

Grid cells for flags with value 2, 3, 4, or 5 are filled as missing where appropriate. Flags 2, 3, 
and 4 take precedence over flag 5. 
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Appendix D. Quality Control Flags for Heat Fluxes 

Flag Value Flag Meaning Explanation 

0 Observation Value from neural network 

1 Interpolation Unused flag 

2 Snow/Ice Snow or ice contamination 

3 Land Over land 

4 Lake Over lake 

5 High Wind Speed Wind speed from input file greater than 
45 m s-1; wind speed set to 45 m s-1 

6 Failed Interpolation Fluxes unresolved 

 

Grid cells for flags with value 2, 3, 4, or 6 are filled as missing where appropriate. Flags 2, 3, 
and 4 take precedence over flag 6. 


