CDR Program

NetCDF Spreadsheet Tools User Guide

[image:]

Version 0.2
Date June 7, 2011

1.	Introduction	4
1.1	Motivation	4
1.2	Uses	4
2.	NetCDF Spreadsheet Structure	7
2.1	Overall Structure	7
2.2	General Dos and Don’ts	8
2.3	Data Types	8
2.4	SpreadsheetVersion Section	9
2.5	Settings Section	9
2.5.1	FillValues Subsection	9
2.5.2	MissingValues Subsection	10
2.6	Group Sections	12
2.6.1	Attributes Subsection	13
2.6.2	Dimensions Subsection	14
2.6.3	Coordinates and Variables Subsections	14
2.6.3.1	Coordinates Subsection	15
2.6.3.2	Variables Subsection	16
2.7	Custom Coordinate and Variable Attributes	17
2.8	Special Coordinate and Variable Attributes	17
2.8.1.1	ValidMin and ValidMax Attributes	17
2.8.1.2	FillValue Attributes	17
2.8.1.3	MissingValue Attributes	18
3.	Using the Scripts and Applications	19
3.1	Creating a NcML File from a Spreadsheet	19
3.2	Creating a NetCDF File from a NcML File	19
3.3	Creating an NcML File from a NetCDF File	19
Creating a Spreadsheet from a NcML File	20
3.4	Creating HTML Tables from a NcML File	21
Appendix A – Full List of Defined Coordinate and Variable Attributes	22
Appendix B – Sample CDR Spreadsheet File	24
1. [bookmark: _Toc294190459]Introduction
This user guide is intended as combination tutorial and reference to a set of Linux scripts, a C/C++ shared object library, and an application that have been developed to help you design and document the structure and contents of netCDF files, and to create those files with a minimum of code writing.
[bookmark: _Toc294190460]Motivation
The netCDF spreadsheet tools are an outgrowth of work on the NPP Climate Raw Data Record (C-RDR) project. The C-RDR netCDF data files have large numbers of variables, and we recognized early on that there would likely be repeated changes in the design of the files before we were done. The goal was to find a way to minimize the amount of custom code that would need to be written to implement that design. The initial work focused on using netCDF Markup Language (NcML) to capture the design, and a C/C++ callable shared object library that would read the NcML file and create all of the groups, attributes, dimensions, and variables specified by the design.
NcML is based on XML, and allows you to specify all parts (names, types, dimensions, values, etc) of a netCDF file. Using NcML in this way makes the production of a netCDF file more configuration-driven and less hard-coded. Many attribute values - such as some of the ones used for Climate and Forecast (CF) Conventions or Attribute Convention for Data Discovery (ACDD) metadata, change slowly over time, and can be fully specified one time in an NcML file used to create many netCDF files. The only unique code that needs to be written for a given netCDF file is the code needed to set changing attribute values such as dates, and to write the data values into the variables.
As this approach was developed for the NPP C-RDR project, it became clear that NcML, while powerful and useful, was somewhat awkward to work with. XML editors are wonderful, but it is not easy to create large numbers of elements and fill in their contents. Spreadsheets, on the other hand, are well suited to tasks that involve a lot of data entry. We developed a format for the organization of rows and columns in a spreadsheet that would allow us to specify the information needed to create our NcML files, and scripts that would generate an NcML file from spreadsheet data and spreadsheet data from an NcML file.
In order to avoid writing application-specific macros (Microsoft Excel vs. OpenOffice.org calc) for working with the spreadsheet data, we chose to use tab-separated-values (TSV) text files as the interface between spreadsheet applications and the scripts. Spreadsheets can be exported to and imported from this file format, and it is easy to write scripts that read from and write to TSV files.
[bookmark: _Toc294190461]Uses
There are a number of different ways in which the netCDF spreadsheets and the NcML files generated from them are useful. We quickly discovered that people found it easy to read and understand the information about a netCDF file when it was presented in spreadsheet form, while understanding the same information presented as NcML was often daunting. This makes the initial design of a netCDF file easier, especially when collaborating with team members that may not be well-versed in the details of NcML or even of netCDF.
Before an NcML file is ever generated, the information can be kept in the native format of the spreadsheet application, and that allows features like revision tracking, commenting, highlighting, reviewing, etc, to be used. If there is a known set of elements that must be present in the netCDF file (such as CF Conventions or ACDD global attributes, for example), a template spreadsheet can be developed that has all of the required elements at least partly specified, which makes it easy to see what information is known and what remains to be captured at any point in time. All of this can help insure that information isn’t overlooked.
Once an NcML file has been generated from the spreadsheet contents (which can be done repeatedly as the netCDF file is being designed), existing tools (Unidata ToolsUI.jar, our own NcMLtoNC application) can be used to create actual netCDF files without writing any code. These files can even have data written to the variables. This allows you to do simple checks with applications that you intend to use to read the netCDF files that you are going to produce.
When you develop the code that is going to produce your netCDF files, you can use a number of different methods to reduce the amount of code you must write to create the netCDF files. There are three ways you can do this.
1. If you are writing your application in Java, you can use the Unidata netCDF-Java Common Data Model Library, version 4.2, to create a netCDF file from an NcML file. The netCDF file thus created will contain all of the attributes, dimensions, variables and (if you chose to have them) groups that you defined in the NcML file, and will have all the attribute values set to the values specified in the NcML file (which, of course, came from the spreadsheet). As a result, you only need to write code to modify the values of attributes that change from the values specified in the spreadsheet, and to fill the variables with actual data values.
2. If you are writing your application in C or C++, you can use the NetCdfSupport shared object library that we have developed and work with the NcML file in the same way as described above for a Java application. Your application will also need the supporting libraries required by the NetCdfSupport library (netCDF 4.1.2 and its dependencies, and Xerces-c 2.8.0).
3. You can, regardless of the language in which you write your application, take a two-step approach. You create a single netCDF file from the NcML file generated from your spreadsheet. You then use this file as a template. Each time you are going to create a new netCDF file, you make a copy of the template file, open it, and then set the attribute and variable contents as described above. The only libraries that your application will need are those needed to open and work with the netCDF file.
By using one of these approaches, you free yourself from having to modify source code when you want to change the value of an attribute that changes rarely, or on a long duty cycle.
You can use these tools to understand the structure and content of existing netCDF files. One of the scripts will take an NcML file and generate a TSV file from it. The NcML file can be generated from a netCDF file using the Unidata ToolsUI.jar. Once the TSV file has been imported into a spreadsheet application, it is easy to study the contents. This is useful when verifying that a netCDF file created using this system actually contains the elements specified by the design, and that they have proper values. This can also be used as a first step in designing a new netCDF file that should have structure or content similar to another, existing netCDF file.
In addition to using this scheme to design and to aid in creating netCDF files, you can use this scheme to aid in documenting the design. One of the scripts in the set will generate tables in HTML from a NcML file. These tables can be used directly in a web site, or you can cut-and-paste them into documents. This can aid in keeping documentation in sync with the actual design.
[bookmark: _Toc294190462]NetCDF Spreadsheet Structure
If you want to use the netCDF spreadsheet tools, the first step is to create and fill out a spreadsheet. To do that, you must understand the way that the data must be organized in the spreadsheet. Since both Microsoft Excel and OpenOffice.org Calc describe locations of spreadsheet cells using letters (A, B, C, …) to refer to columns, numbers (1, 2, 3, …) to refer to rows, and a combination of the two to refer to specific cells (A1, C3, …), this document uses the same convention to refer to spreadsheet locations.
[bookmark: _Toc294190463]Overall Structure
A netCDF spreadsheet is composed of section rows, subsection rows, data rows, and comment rows. Section rows start in column A. Subsection rows start in column B. Data rows start in column C. Comment rows are rows in which the first character in the first non-empty column is a ‘#’ symbol. Comment rows are ignored by the scripts. Empty rows are useful to help delineate sections, subsections, etc. They are also ignored by the scripts.
A section contains zero or more subsections. All rows until the next section row are part of that section. A subsection contains zero or more data rows. All data rows until the next subsection or section row are part of that subsection. If a subsection row has an empty cell (apart from the first cell) and all data rows for the subsection have empty cells in the same column, the scripts ignore the blank column. This can be used to align information between different subsections, or be used to make it easier to read the contents of cells.
There are three types of Section rows: SpreadsheetVersion, Settings, and Group. The SpreadsheetVersion section row should be the first non-comment non-empty row in the spreadsheet. The Settings section, if you have one, should follow the SpreadsheetVersion section. One or more group sections will follow these first two.
The contents of the cells in subsection rows are treated in a special way. (This is reiterated in Appendix A.) The examples in this document all use subsection row cells that have names that are written in CamelCase, where the initial letter of each word is capitalized (i.e. ValidMin), primarily because they make them easier to identify as column headers in tables. The Climate and Forecast Conventions, however, use names composed of all lowercase words separated by underbars (i.e. valid_min). In this document, this scheme will be referred to as lower_bar.
When translating the contents of the spreadsheet file to NcML, the scripts will translate CamelCase names to lower_bar equivalents. Appendix A specifies the details and the exception to this rule. If a name is already lower_bar, it will pass through unchanged. This CamelCase-to-lower_bar translation only applies to the names in cells of subsection rows. It does not apply to the leading cells in these rows, which name the type of subsection. Note also that this does not apply to the names of variables or coordinates, only to the names of attributes that will be associated with variables or coordinates.
You can see a sample CDR spreadsheet file in table form in Appendix B.
[bookmark: _Toc294190464]General Dos and Don’ts
Although it is not required, it is generally best to set the format of all the cells in the spreadsheet to “text”. This will ensure that numbers and dates that you type are saved exactly as you type them. Spreadsheet applications have an annoying habit of converting dates, times, and 64-bit integers into floating point numbers; and of truncating 64-bit floating point numbers with long mantissas unless you set the format of the cells meant to hold the values to “text” before you enter data into them.
It is a good idea to provide enough vertical space (through judicious use of blank rows) to make it clear where different sections and subsections begin and end. It is also good to use comment rows to document the contents.
You can also use blank columns in subsections to make it easier to see the contents, or (for example) to help align common columns between “Coordinates” and “Variables” subsections.
Don’t use non-ASCII characters. It will cause major heartburn down the road. Definitely don’t try to use tab characters within your spreadsheet cells. You will get very strange results.
[bookmark: _Toc294190465]Data Types
Data types are specified in a number of different locations within a spreadsheet file. The permissible data types are:

	Type Name
	Description

	byte
	8-bit signed integer

	unsigned byte
	8-bit unsigned integer

	short
	16-bit signed integer

	unsigned short
	16-bit unsigned integer

	int
	32-bit signed integer

	unsigned int
	32-bit unsigned integer

	long
	64-bit signed integer

	unsigned long
	64-bit unsigned integer

	float
	32-bit floating point number

	double
	64-bit floating point number

	string
	String of ASCII characters

[bookmark: _Toc294190466]SpreadsheetVersion Section
The SpreadsheetVersion section is quite simple. Column A contains “SpreadsheetVersion”. Column B contains the version number. As of the writing of this User Guide, the version number is 1.0. This section has no subsection or data rows.
In table form, the section row looks like:
	A
	B

	SpreadsheetVersion
	1.0

The version number will be used to handle any backwards compatibility issues with future changes in spreadsheet organization.
[bookmark: _Toc294190467]Settings Section
The Settings section can contain up to two subsections: the FillValues subsection and the MissingValues subsection. These subsections are used to define default values for the _FillValue and missing_value attributes on variables. The default values are specified by type. The two subsections can occur in any order, and both are optional.
[bookmark: _Toc294190468]FillValues Subsection
The FillValues subsection, if present, specifies the default value to use for the _FillValue attribute on each variable that has a numeric data type. The subsection row is composed of the word “FillValues” in column B, the word “Type” in column C, and the word “Value” in column D. The subsection row is followed by zero or more data rows. Each row specifies a fill value to use for a particular numeric data type. The valid type names are byte, unsigned byte, short, unsigned short, int, unsigned int, long, unsigned long, float, and double. The data rows may appear in any order, and all are optional.
If this subsection is present, then the script that generates an NcML file from the TSV file exported from the spreadsheet application will automatically create a _FillValue attribute on every variable with a listed type that does not have a _FillValue attribute explicitly specified. This will be discussed further in Section 2.4.4 of this User Guide.

An example of a FillValues subsection in table form is:
	A
	B
	C
	D

	Settings
	
	
	

	
	FillValues
	Type
	Value

	
	
	byte
	-128

	
	
	unsigned byte
	255

	
	
	short
	-32768

	
	
	unsigned short
	65535

	
	
	int
	-2147483648

	
	
	unsigned int
	4294967295

	
	
	long
	-9223372036854775807

	
	
	unsigned long
	18446744073709551615

	
	
	float
	3.40282347e+38

	
	
	double
	1.7976931348623157e+308

[bookmark: _Toc294190469]MissingValues Subsection
The MissingValues subsection, if present, specifies the default values to use for the missing_value attribute on each variable that has a numeric data type. The subsection row is composed of the word “MissingValues” in column B, the word “Type” in column C, and a series of strings in columns D and beyond. The strings in column D and beyond specify a set of meanings to associate with different numbers that indicate that data is missing. A string for a meaning cannot contain whitespace. It can contain ‘_’ characters. Each string should specify a short, human-understandable explanation of the meaning to associate with each of the missing value numbers that will appear in the same column of the data rows that follow the subsection row.
The subsection row is followed by zero or more data rows. Each row specifies a set of numbers to use to indicate missing values for a particular numeric data type. There is one number for each meaning specified in the subsection row. A data row is composed of a type name in column C and “missing” values in columns D and beyond. The data rows may appear in any order, and all are optional.
This subsection, once filled in, is a table in which each column shows the numbers that indicate a particular missing value condition in variables of different types. Each cell of the table must be filled in. It is an error to have an empty data row cell if the cell in the same column of the subsection row is not empty. Starting at column D, it is legal for a cell in the subsection row and all data row cells below it to be empty. A warning will be generated if a cell in the subsection row is empty and a data row cell in the same column contains a value.
If this subsection is present, then the script that generates an NcML file will automatically create a missing_value attribute on every variable with a listed type that does not have a missing_value attribute explicitly specified. The missing_value attribute contains an array of numbers that indicate missing values for the variable. This will be discussed further in Section 2.4.4 of this User Guide.
An example of a MissingValues subsection that specifies two missing values per type is:
	A
	B
	C
	D
	E

	Settings
	
	
	
	

	
	MissingValues
	Type
	InputOutOfBounds
	Did_not_converge

	
	
	byte
	127
	126

	
	
	unsigned byte
	154
	153

	
	
	short
	32767
	32766

	
	
	unsigned short
	65534
	65533

	
	
	int
	2147483647
	2147483646

	
	
	unsigned int
	4294967294
	4294967293

	
	
	long
	59
	58

	
	
	unsigned long
	59
	58

	
	
	float
	-3.1415926545
	-9.87654321

	
	
	double
	-2.718281828
	-1.23456789

In addition to automatically generating missing_value attributes on variables, if this section is present the script will generate file-level attributes that capture the contents of this subsection. The attribute names and contents are described in this table:
	Attribute Name
	Contents

	missing_value_meanings (always)
	The meaning strings specified in columns D and beyond of the subsection row.

	missing_values_8bit_signed (optional)
	Missing values for variables of type byte.

	missing_values_8bit_unsigned (optional)
	Missing values for variables of type unsigned byte.

	missing_values_16bit_signed (optional)
	Missing values for variables of type short.

	missing_values_16bit_unsigned (optional)
	Missing values for variables of type unsigned short.

	missing_values_32bit_signed (optional)
	Missing values for variables of type int.

	missing_values_32bit_unsigned (optional)
	Missing values for variables of type unsigned int.

	missing_values_64bit_signed (optional)
	Missing values for variables of type long.

	missing_values_64bit_unsigned (optional)
	Missing values for variables of type unsigned long.

	missing_values_32bit_float (optional)
	Missing values for variables of type float.

	missing_values_64bit_float (optional)
	Missing values for variables of type double.

The attributes listed as optional in the table will only be present if there was a corresponding data row specifying missing value numbers for that type.
Keep in mind that the MissingValues subsection is only useful if most or all of the data variables in your file use the same set of numbers to indicate missing values.
[bookmark: _Toc294190470]Group Sections
There will be one or more Group sections. Each Group section may contain zero or more subsections. The subsections are “Attributes”, “Dimensions”, “Coordinates”, and “Variables”. The subsections can appear in any order, and all are optional, although there are potential dependencies between the Dimensions subsection and the Coordinates and Variables subsections. These dependencies will be discussed below.
A Group section row contains the word “Group” in column A, and the pathname of the group in column B. The pathname is a sequence of group names separated by ‘/’ characters, and specifies the location of the group being defined by the section in the hierarchy of nested groups. Each group name must conform to the netCDF constraints on names. NetCDF names are limited to ASCII alphanumeric characters and underscores, and names must not begin with a digit.
There is a special group section in which file-level attributes, dimensions, coordinates, and variables are specified. The name for this group in the section row must be “Global”. NetCDF 3 files (and files compatible with netCDF 3 limitations) may not have any other group sections. The name “Global” does not actually name any group in the NcML file that will be generated (since the file-level group has no name), and as a result, a reserved word within this system, and no other group may be given this name.
A top-level group is specified by a name with no preceding group names or ‘/’ characters. A group contained within a top-level group is specified by the name of the top-level group, a ‘/’ character, and the name of the group being specified. All groups that appear as part of the path in a Group section row name must have a corresponding Group section row of its own, even though there may not be any subsections for that group.
[bookmark: _Toc294190471]Attributes Subsection
There is one Attributes subsection per group section. An Attributes subsection may contain zero or more data rows. An Attributes subsection row contains the word “Attributes” in column B, followed by the words “Name(Att)”, “Type(Att)”, and “Value(Att)” in any order.
The subsection row is followed by zero or more data rows. Each row specifies the name, type, and value for a group attribute. (If the group being defined is the “Global” group, these will be file-level attributes.) A data row is composed of an attribute name in the “Name(Att)” column, a valid type name in “Type(Att)” column, and one or more values in the “Value(Att)” column. Attribute names must conform to the netCDF name restrictions previously mentioned.
Attributes may contain one-dimensional arrays of numeric values. If the type specified in a data row is numeric and the “Value(Att)” cell contains multiple numbers separated by spaces, the contents will be considered to be an array. If the type is “string”, the entire contents of the “Value(Att)” cell will be considered as a single string.
An example in table form of a file-level Attributes subsection with two attributes is:
	A
	B
	C
	D
	E

	Group
	Global
	
	
	

	
	Attributes
	Name(Att)
	Type(Att)
	Value(Att)

	
	
	creator_name
	string
	John Doe

	
	
	TwoNumbers
	double
	1.3 -9.8e-250

[bookmark: _Toc294190472]Dimensions Subsection
There is one Dimensions subsection per group section. A Dimensions subsection may contain zero or more data rows. A Dimensions subsection row contains the word “Dimensions” in column B, followed by the words “Name(Dim)” and “Length(Dim)” in any order.
The subsection row is followed by zero or more data rows. Each row specifies the name and length for a group dimension. (If the group being defined is the “Global” group, these will be file-level dimensions.) A data row is composed of a dimension name in the “Name(Dim)” column and a length in the “Length(Dim)” column. Dimension names must conform to the netCDF name restrictions previously mentioned.
A dimension may be finite, in which case it must be an integer number that is greater than zero, or it may be unlimited. An unlimited dimension is marked by specifying a length of zero, or by placing the word “unlimited” in the “Length(Dim)” cell of the data row. Only one unlimited dimension is allowed in netCDF 3. Any number of unlimited dimensions are allowed in netCDF 4.
The scope of dimensions is hierarchical. A dimension defined in a higher-level group is visible in all groups below it. A file-level dimension is visible in all groups.
An example in table form of a Dimensions subsection with two dimensions is:
	A
	B
	C
	D

	Group
	Maps/NorthAmerica
	
	

	
	Dimensions
	Name(Dim)
	Length(Dim)

	
	
	latitude
	100

	
	
	Time
	unlimited

[bookmark: _Toc294190473]Coordinates and Variables Subsections
The Coordinates and Variables subsections share a number of features. From a netCDF perspective, coordinates are variables that have a few specific restrictions. A coordinate variable must be one-dimensional, and the name of the variable must be the name of the dimension for the variable. A coordinate variable must not contain fill values or missing values, and the values must represent a path that does not cross itself. (I was going to say continuously increasing, but then those pesky polar passes barged in, insisting on being accounted for.)
These subsections differ from the previous ones. In these subsections there are many optional columns that may be specified, and, except for a few required columns, it is not necessary to provide a value for every row of a column. If a row in a column is blank, then the attribute associated with that column is not applied to the variable or coordinate being defined by that row. (See section 2.8 for a discussion of exceptions to this rule.)
Apart from the required columns, where the names, types, and shapes of variables are specified, the subsection columns specifiy netCDF attributes to associate with variables. If an optional column in a particular data row is blank, the corresponding attribute will not appear on the variable being specified. It is also possible to specify custom attributes for coordinates and variables. This is discussed in section 2.7.
The “Values” attribute can be used to specify a fixed list of data values for a coordinate or variable. This list can be specified two different ways. A space-separated list of values can be specified in a data row cell (such as “1.2 3.5 -9.99” or “dog bat cat”), or a start value and increment can be specified with a string like “start=3.1 increment=-2” in a data row cell. If a space-separated list is specified, the number of elements much match the number of elements of the coordinate or variable. If a start and increment is specified, the first element of the coordinate or variable will be set to the start value, and each element after that will have a value that is different from the previous element by the increment value. All elements of the coordinate or variable will be filled following row-major ordering of the shape. You cannot specify values for a coordinate or variable that has an unlimited dimension in its shape.

[bookmark: _Toc294190474]Coordinates Subsection
There is one Coordinates subsection per group section. A Coordinates subsection may contain zero or more data rows. A Coordinates subsection row contains the word “Coordinates” in the column B cell. In the cells that follow, there must be a “Type(Coord)” cell, and either a “Name(Coord)” cell or a “Shape(Coord)” cell. If there is both a “Name(Coord)” cell and a “Shape(Coord)” cell, the values in the corresponding cells in the data rows must match. (This is the definition of a coordinate variable – the name and shape must match.) Since the shape is the dominant factor, it is probably best to have only a “Shape(Coord)” cell. Other attributes that may be attached to coordinate variables in this group may also be specified. The names of the pre-defined attributes are listed in Appendix A. It is also possible to specify custom attributes as described in section 2.7. The special attributes “ValidMin” and “ValidMax”, whether or not they are specified in the subsection row, will behave as described in section 2.8.
The subsection row is followed by zero or more data rows. Each row specifies, at minimum, the name/shape and type for a group coordinate variable. (If the group being defined is the “Global” group, these will be file-level coordinate variables.) A data row is composed of a coordinate variable name and/or shape and type in the appropriate columns. If attribute names are present in other columns of the Coordinates subsection row, the data row may have a value to associate with that attribute in the corresponding cell, or that cell may be left empty, in which case no attribute will be defined for the coordinate variable being defined by the data row (with the exception of the special attributes, as explained in section 2.8).
Each coordinate variable must have a name/shape that matches an in-scope dimension name. See section 2.6.2 for a discussion of dimension scope.

An example in table form of a Coordinates subsection with two coordinates is:
	A
	B
	C
	D
	
	

	Group
	Global
	
	
	
	

	
	Coordinates
	Shape(Coord)
	Type(Coord)
	Units
	Values

	
	
	latitude
	float
	degrees_east
	start=0 increment=10

	
	
	Time
	int
	seconds since 1970/01/01 00:00:00
	

[bookmark: _Toc294190475]Variables Subsection
There is one Variables subsection per group section. A Variables subsection may contain zero or more data rows. A Variables subsection row contains the word “Variables” in the column B cell. In the cells that follow, there must be a “Name(Var)” cell, a “Type(Var)” cell, and a “Shape(Var)” cell. Other attributes that may be attached to variables in this group may also be specified. The names of the pre-defined attributes are listed in Appendix A. It is also possible to specify custom attributes as described in section 2.7. The special attributes “MissingValue”, “FillValue”, “ValidMin”, and “ValidMax”, whether or not they are specified in the subsection row, will behave as described in section 2.8.
The subsection row is followed by zero or more data rows. Each row specifies, at minimum, the name/shape and type for a group coordinate variable. (If the group being defined is the “Global” group, these will be file-level coordinate variables.) A data row is composed of a coordinate variable name and/or shape and type in the appropriate columns. If attribute names are present in other columns of the Coordinates subsection row, the data row may have a value to associate with that attribute in the corresponding cell, or that cell may be left empty, in which case no attribute will be defined for the coordinate variable being defined by the data row (with the exception of the special attributes, as explained in section 2.8).
A variable (but not a coordinate) may have attributes that declare it to be a “scaled” variable. If you wish to define a scaled variable, you must specify values for three attributes. These attributes are “ScaledType”, “AddOffset”, and “ScaleFactor”. The “ScaledType” attribute is the data type of the “AddOffset” and “ScaleFactor” attributes. value that is the result of applying the offset and scale to a variable value. It is also the data type of the values that result from applying the scale and offset to the variable values.
Each variable must have a shape composed of in-scope dimension names. See section 2.6.2 for a discussion of dimension scope.

An example in table form of a Variables subsection with two variables is:
	A
	B
	
	C
	D
	

	Group
	Global
	
	
	
	

	
	Variables
	Name(Var)
	Shape(Var)
	Type(Var)
	Units

	
	
	pressure
	latitude time
	float
	hPA

	
	
	opacity
	latitude time
	float
	%

[bookmark: _Toc294190476]Custom Coordinate and Variable Attributes
If you wish to specify an attribute for a coordinate or variable that is not in the lists found in Appendix A, you can do so. If it is to be a string attribute, you can specify the name for the attribute in an appropriate cell of a Coordinates or Variables subsection row. If the attribute has some other type, you must specify it as the name, a colon, and the type. This will look something like “PickleJars:double”. The name will be subject to CamelCase-to-lower_bar translation as described in section 2.1.
[bookmark: _Toc294190477]Special Coordinate and Variable Attributes
There are four attributes that can be specified for coordinates and variables that are treated differently than the rest. These are (in CamelCase form) “ValidMin”, “ValidMax”, “MissingValue”, and “FillValue”. Their lower_bar equivalents (which is what you will find in the CF Metadata Conventions documentation) are “valid_min”, “valid_max”, “missing_value”, and “_FillValue”.
[bookmark: _Toc294190478]ValidMin and ValidMax Attributes
The script that converts from the spreadsheet contents to NcML will automatically add valid_min and valid_max attributes to coordinates and variables that don’t have these attributes explicitly specified. The values for these added attributes will be the full-range minimum and maximum values for the type of the variable. No automatic attributes will be added to string variables or coordinates. (In fact, it is invalid to specify a valid_min or valid_max attribute for a string coordinate or variable.)
If you know that there is a valid minimum and/or maximum value for a variable or coordinate that is less than the full range of the data type, specify the appropriate columns in the subsection row for that coordinate or variable and fill in the non-default values.
[bookmark: _Toc294190479]FillValue Attributes
The _FillValue attribute will be treated in a non-standard fashion if there is a FillValues subsection in the Settings section (as described in section 2.5.1). The _FillValue attribute is not used with coordinates, so this only applies to regular variables.
If a FillValue attribute value was explicity specified for a variable, a _FillValue attribute will be created and the specified value will be used. If there is a FillValues section and no FillValue attribute value has been explicitly specified for a variable, the script that creates the NcML file from the spreadsheet output will search the table of fill values to see if there is a default fill value specified for the type. If so, a _FillValue attribute will be create for the variable, and the value found in the table will be set as the value of the attribute. If there is no entry in the table for the data type of the variable, no attribute will be created.
If there is a FillValues table, but you wish to prevent a _FillValue attribute to be created for a variable, explicitly specify a value of “n/a” in the data row for the variable. (A corresponding “FillValue” column must be specified in the subsection row.)
[bookmark: _Toc294190480]MissingValue Attributes
The missing_value attribute will be treated in a non-standard fashion if there is a MissingValues subsection in the Settings section (as described in section 2.5.2). The missing_value attribute is not used with coordinates, so this only applies to regular variables.
If a MissingValue attribute value was explicity specified for a variable, a missing_value attribute will be created and the specified value will be used. If there is a MissingValues section and no MissingValue attribute value has been explicitly specified for a variable, the script that creates the NcML file from the spreadsheet output will search the table of missing values to see if there is a default missing value specified for the type. If so, a missing_value attribute will be create for the variable, and the value found in the table will be set as the value of the attribute. If there is no entry in the table for the data type of the variable, no attribute will be created. As a reminder, the missing_value attribute can be an array-type attribute with multiple values. The “value” from the MissingValues table may be composed of multiple numbers.
If there is a MissingValues table, but you wish to prevent a missing_value attribute to be created for a variable, explicitly specify a value of “n/a” in the data row for the variable. (A corresponding “MissingValue” column must be specified in the subsection row.)
[bookmark: _Toc294190481]Using the Scripts and Applications
[bookmark: _Toc294190482]Creating a NcML File from a Spreadsheet
The TSVtoNcML script is used to read a file that is exported from a spreadsheet program and write a netCDF Markup Language (NcML) file. The NcML file can then be used to create a netCDF file.
Before running the script, you must first create a tab-separated-values (TSV) file from the contents of your spreadsheet file, which has a sheet that has been filled in according the format described above. To do this, select the “Save as…” menu item from the “File” menu. (Of course, Excel 2007 no longer has a “File” menu. It has an “Office Button” now!) On the “Save As” dialog that pops up, set the “Save as type” to “Text (Tab delimited)(*.txt)” if using Excel, and to “Text CSV (.csv)” if using OpenOffice. Specify a name for the file to be saved and click the “Save” button. It is not required, but it may make it clearer what the file is if you set the file extension to “.tsv” instead of “.txt”. You will be asked if you really want to save the file in this format, and you may be warned that only the current sheet will be saved. Reply in the positive.
If you are using Excel, that all you need to do. If you are using OpenOffice, you will see another dialog titled “Export of text files”. Set the “Field delimiter” option to {Tab} and click the “OK” button.
Now that you have the spreadsheet contents saved as a TSV file, run the TSVtoNcML script to produce the NcML file. The syntax is:
TSVtoNcML <input TSV file> <output NcML file>
Replace “<input TSV file>” with the name of the input TSV file, and replace “<output NcML file>” with the name of the NcML file. The recommended extension for the NcML file is “.ncml”.
[bookmark: _Toc294190483]Creating a NetCDF File from a NcML File
There are a couple of ways to create a netCDF file from a NcML file. If you use the netCDF Tools UI java jar file, you can open the NcML file in the NcML tab and create a netCDF file by clicking the “Write netCDF” button (the one with the ring on it).
You can also use the NcMLtoNC Linux command-line application that will perform the same conversion. If you want to use this, please contact Jim Biard for more information.
[bookmark: _Toc294190484]Creating an NcML File from a NetCDF File
To create a NcML file from a netCDF file, use the netCDF Tools UI java jar file. Open the netCDF file in the NcML tab and create a NcML file by clicking the “Save NcML” button (the one with the diskette on it).

[bookmark: _Toc294190485]Creating a Spreadsheet from a NcML File
To create a spreadsheet file from a NcML file, use the NcMLtoTSV script. The syntax is:
NcMLtoTSV [--collect-all] [--collect-coords] [--collect-fill][--collect-minmax]
 [--collect-missing] <input NcML file> <output TSV file>
Replace “<input NcML file>” with the name of the input NcML file, and “<output TSV file>” with the name of the output TSV file. Again, it is good for clarity to save the TSV file with an extension of “.tsv”.
There are a number of options that you can specify. They are:
--collect-all	Equivalent to specifying all of the collect options.
--collect-coords	Remove names from variable "coordinates" attributes that specify coordinates that have names corresponding to shape dimensions.
--collect-fill	Write a Settings/FillValues subsection in the TSV file that contains a list of the most-used fill values for each type. Variables with _FillValue attributes that match these values won't have entries in the FillValue column.
--collect-minmax	Remove valid_min and valid_max attributes that match the full-range limits for the variable types. (For example, if the variable type is "unsigned short", and the valid_max attribute is 65535, remove the attribute.)
--collect-missing	If the global attributes for the NcML file contain attributes that specify the meanings and corresponding values for missing_value attributes for different types, write a Settings/MissingValues subsection in the TSV file that contains a list of the missing value meanings and values for each type. Variables with missing_value attributes that match these values won't have entries in the MissingValue column. The global attributes specifying the missing value meanings and values will be removed.
Once you have created the TSV file, import it into your spreadsheet application to view it or modify it. In Excel 2007, create a new spreadsheet and set the format for all cells on the sheet to “text”. Click on the “Data” tab and then click on the “From Text” button in the “Get External Data” section. In the “Import Text File” dialog that appears, select the TSV file and click the “Import” button. A “Text Import Wizard” dialog will appear.
In the “Text Import Wizard” dialog, specify that the file type is “Delimited”, that the delimiter is “Tab”, and make sure that the “Treat consecutive delimiters as one” box is not checked. Mark the column data format for all columns as “Text”. Once you have reached the end of the wizard pages, click the “Finish” button. If a dialog appears that asks you where to place the data, select to place the data starting at the “A1” cell.
If you are using OpenOffice as your spreadsheet application, the process is similar. The import is done using the “Sheet From File…” selection in the “Insert” menu.
[bookmark: _Toc294190486]Creating HTML Tables from a NcML File
[bookmark: _Toc294190487]To create a HTML file from a NcML file, use the NcMLtoHTML script. The syntax is:
NcMLtoHTML [--collect-all] [--collect-coords] [--collect-fill][--collect-minmax]
 [--collect-missing] <input NcML file> <output HTML file>
Replace “<input NcML file>” with the name of the input NcML file, and “<output HTML file>” with the name of the output HTML file.
There are a number of options that you can specify. They are:
--collect-all	Equivalent to specifying all of the collect options.
--collect-coords	Remove names from variable "coordinates" attributes that specify coordinates that have names corresponding to shape dimensions.
--collect-fill	Write a FillValues table in the HTML file that contains a list of the most-used fill values for each type. Variables with _FillValue attributes that match these values will have "default" entries in the FillValue column.
--collect-minmax	Change valid_min and valid_max attributes that match the full-range limits for the variable types to MAX_<TYPE> and MIN_<TYPE>, respectively. (For example, if the variable type is "unsigned short", and the valid_max attribute is 65535, display the attribute value as "MAX_USHORT".)
--collect-missing	If the global attributes for the NcML file contain attributes that specify the meanings and corresponding values for missing_value attributes for different types, write a MissingValues table in the HTML file that contains a list of the missing value meanings and values for each type. Variables with missing_value attributes that match these values have "default" entries in the MissingValue column. The global attributes specifying the missing value meanings and values will be removed.
Appendix A – Full List of Defined Coordinate and Variable Attributes
The full list of attributes that are recognized by the TSVtoNcML script is in the table below. The “Type” column indicates the type of the attribute. If the type is “var”, then the attribute type matches the type of the variable or coordinate. The “For” column indicates whether or not an attribute is valid for a coordinate or a variable. A “C” in a cell indicates that the attribute is valid for a coordinate, and a “V” in a cell indicates that the attribute is valid for a variable.

	Name (lower_bar)
	Name (CamelCase)
	Type
	For
	Comments

	add_offset
	AddOffset
	*
	V
	Type specified by the scaled_type pseudo-attribute.

	ancillary_variables
	AncillaryVariables
	String
	V
	

	axis
	Axis
	String
	C
	

	bounds
	Bounds
	String
	CV
	

	calendar
	Calendar
	String
	CV
	

	cell_measures
	CellMeasures
	String
	V
	

	cell_methods
	CellMethods
	String
	V
	

	climatology
	Climatology
	String
	CV
	

	comment
	Comment
	String
	V
	

	compress
	Compress
	String
	C
	

	coordinates
	Coordinates
	String
	V
	

	_FillValue
	FillValue
	Var
	V
	

	flag_masks
	FlagMasks
	Var
	V
	

	flag_meanings
	FlagMeanings
	String
	V
	

	flag_values
	FlagValues
	Var
	V
	

	formula_terms
	FormulaTerms
	String
	C
	

	grid_mapping
	GridMapping
	String
	V
	

	leap_month
	LeapMonth
	int
	CV
	

	leap_year
	LeapYear
	int
	CV
	

	long_name
	LongName
	String
	CV
	

	missing_value
	MissingValue
	Var
	V
	

	month_lengths
	MonthLengths
	int
	CV
	

	positive
	Positive
	string
	CV
	

	references
	References
	String
	V
	

	scale_factor
	ScaleFactor
	*
	V
	Type specified by the scaled_type pseudo-attribute.

	scaled_type
	ScaledType
	String
	V
	Pseudo-attribute. Only used to specify the type for the add_offset and scale_factor attributes.

	source
	Source
	String
	V
	

	standard_error_multiplier
	StandardErrorMultiplier
	Var
	V
	

	standard_name
	StandardName
	String
	CV
	

	units
	Units
	String
	CV
	

	valid_min
	ValidMin
	Var
	CV
	

	valid_max
	ValidMax
	Var
	CV
	

	values
	Values
	Var
	CV
	

NOAA	CDR Program
		NetCDF Spreadsheet Tools User Guide

	4 	Version 0.2
Date June 7, 2011
[bookmark: _Toc294190488]Appendix B – Sample CDR Spreadsheet File
The table below contains a sample spreadsheet file. It contains all of the CDR-recommended global metadata attributes. It also contains an illustrative missing_value attribute table. The missing_value values are entirely fictional. It is not intended to be read within the document. Instead, copy the table contents and paste them into a spreadsheet.
	[bookmark: RANGE!A1:M81]SpreadsheetVersion
	1.0
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Settings
	
	
	
	
	
	
	
	
	
	
	
	

	
	FillValues
	Type
	Value
	
	
	
	
	
	
	
	
	

	
	
	unsigned short
	65535
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	MissingValues
	Type
	SolutionDiverged
	InputOutOfRange
	
	
	
	
	
	
	
	

	
	
	byte
	
	
	
	
	
	
	
	
	
	

	
	
	unsigned byte
	
	
	
	
	
	
	
	
	
	

	
	
	short
	
	
	
	
	
	
	
	
	
	

	
	
	unsigned short
	65533
	65534
	
	
	
	
	
	
	
	

	
	
	int
	
	
	
	
	
	
	
	
	
	

	
	
	unsigned int
	
	
	
	
	
	
	
	
	
	

	
	
	long
	
	
	
	
	
	
	
	
	
	

	
	
	unsigned long
	
	
	
	
	
	
	
	
	
	

	
	
	float
	
	
	
	
	
	
	
	
	
	

	
	
	double
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Group
	Global
	
	
	
	
	
	
	
	
	
	
	

	
	Attributes
	Name(Att)
	Type(Att)
	Value(Att)
	
	
	
	
	
	
	
	

	
	
	Conventions
	string
	CF-1.5
	
	
	
	
	
	
	
	

	
	
	title
	string
	Sample dataset
	
	
	
	
	
	
	
	

	
	
	source
	string
	gargle32.dat,speckle_18.dat
	
	
	
	
	
	
	
	

	
	
	references
	string
	http://foo.bar.org/bazzfazz/
	
	
	
	
	
	
	
	

	
	
	history
	string
	It was a dark and stormy night...
	
	
	
	
	
	
	
	

	
	
	comment
	string
	This isn't really real data, you know.
	
	
	
	
	
	
	
	

	
	
	Metadata_Conventions
	string
	CF-1.5,Unidata Dataset Discovery v1.0,NOAA CDR v1.0,GDS v2.0
	
	
	
	
	
	
	
	

	
	
	standard_name_vocabulary
	string
	CF Standard Name Table (v16, 11 October 2010)
	
	
	
	
	
	
	
	

	
	
	id
	string
	34837-deff00d-ab45
	
	
	
	
	
	
	
	

	
	
	naming_authority
	string
	gov.noaa.ncdc
	
	
	
	
	
	
	
	

	
	
	date_created
	string
	2011-04-26T14:16:00Z
	
	
	
	
	
	
	
	

	
	
	date_modified
	string
	2011-04-26T14:16:00Z
	
	
	
	
	
	
	
	

	
	
	license
	string
	No constraints on data access or use
	
	
	
	
	
	
	
	

	
	
	date_issued
	string
	2100-01-01T00:00:00Z
	
	
	
	
	
	
	
	

	
	
	summary
	string
	This is a sample dataset that isn't real.
	
	
	
	
	
	
	
	

	
	
	keywords
	string
	silly,unreal,sample
	
	
	
	
	
	
	
	

	
	
	keywords_vocabulary
	string
	NASA Global Change Master Directory (GCMD) Eatrh Science keywords, Version 6.0
	
	
	
	
	
	
	
	

	
	
	cdm_data_type
	string
	Grid
	
	
	
	
	
	
	
	

	
	
	project
	string
	JPSS
	
	
	
	
	
	
	
	

	
	
	processing_level
	string
	NOAA Level -1
	
	
	
	
	
	
	
	

	
	
	creator_name
	string
	Jim Biard
	
	
	
	
	
	
	
	

	
	
	creator_url
	string
	http://www.ncdc.noaa.gov
	
	
	
	
	
	
	
	

	
	
	creator_email
	string
	jim.biard@noaa.gov
	
	
	
	
	
	
	
	

	
	
	institution
	string
	NCDC
	
	
	
	
	
	
	
	

	
	
	geospatial_lat_min
	float
	-85
	
	
	
	
	
	
	
	

	
	
	geospatial_lat_max
	float
	85
	
	
	
	
	
	
	
	

	
	
	geospatial_lon_min
	float
	-179
	
	
	
	
	
	
	
	

	
	
	geospatial_lon_max
	float
	180
	
	
	
	
	
	
	
	

	
	
	geospatial_lat_units
	string
	degrees_north
	
	
	
	
	
	
	
	

	
	
	geospatial_lon_units
	string
	degrees_east
	
	
	
	
	
	
	
	

	
	
	geospatial_lat_resolution
	float
	1
	
	
	
	
	
	
	
	

	
	
	geospatial_lon_resolution
	float
	1
	
	
	
	
	
	
	
	

	
	
	time_coverage_start
	string
	2000-01-01T00:00:00Z
	
	
	
	
	
	
	
	

	
	
	time_coverage_end
	string
	2010-01-01T00:00:00Z
	
	
	
	
	
	
	
	

	
	
	time_coverage_duration
	string
	P10Y
	
	
	
	
	
	
	
	

	
	
	time_coverage_resolution
	string
	P1Y
	
	
	
	
	
	
	
	

	
	
	contributor_name
	string
	Alfred E. Newman
	
	
	
	
	
	
	
	

	
	
	contributor_role
	string
	pointOfContact
	
	
	
	
	
	
	
	

	
	
	acknowledgement
	string
	I would like to thank all the little people...
	
	
	
	
	
	
	
	

	
	
	cdr_program
	string
	NOAA Climate Data Record Program for satellites, FY 2011
	
	
	
	
	
	
	
	

	
	
	cdr_variable
	string
	plastic_spoon_density
	
	
	
	
	
	
	
	

	
	
	software_version_id
	string
	gov.noaa.ncdc:00.00.99
	
	
	
	
	
	
	
	

	
	
	metadata_link
	string
	weoiuxc027d7s
	
	
	
	
	
	
	
	

	
	
	product_version
	string
	v22r99
	
	
	
	
	
	
	
	

	
	
	platform
	string
	NPP
	
	
	
	
	
	
	
	

	
	
	sensor
	string
	VIIRS
	
	
	
	
	
	
	
	

	
	
	spatial_resolution
	string
	1 degree
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Dimensions
	Name(Dim)
	Length(Dim)
	
	
	
	
	
	
	
	
	

	
	
	lat
	171
	
	
	
	
	
	
	
	
	

	
	
	lon
	360
	
	
	
	
	
	
	
	
	

	
	
	time
	11
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Coordinates
	Shape(Coord)
	Type(Coord)
	Units
	Axis
	Values
	LongName
	StandardName
	
	
	
	

	
	
	lon
	short
	degrees_east
	X
	start=-179 increment=1
	longitude
	longitude
	
	
	
	

	
	
	lat
	short
	degrees_north
	Y
	start=-85 increment=1
	latitude
	latitude
	
	
	
	

	
	
	time
	short
	years since 2000-01-01 00:00:00
	T
	start=0 increment=1
	years
	years
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Variables
	Name(Var)
	Type(Var)
	Shape(Var)
	Units
	ValidMax
	LongName
	AddOffset
	ScaledType
	ScaleFactor
	Values
	StandardName

	
	
	plastic_spoon_density
	unsigned short
	time lon lat
	count/km^2
	60000
	Areal density of plastic spoons
	37.2
	float
	1000.0
	start=0 increment=1
	spoonity

image1.png

