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Abstract

Emissivity variation of land surface is the most difficult effect on error sources in retrieving land surface temperature (LST) from satellite measurement. This is not only because of the surface type difference in a measured surface pixel, but also because of the combination of different surface types in the pixel and the satellite-solar viewing geometry. The modified geometric project (MGP) model has been demonstrated to present such an effect well if the surface type and vegetation continuity information are available. In this study, we tried to build a lookup table to correct the surface emissivity variation effect in the LST retrieval. The lookup table is calculated using the MGP model and the MODTRAN simulation tool.  In the MGP model, it is assumed that the apparent land surface to the satellite sensor is combined with a pure vegetation type and a soil background. The pure surface types and their emissivity values are adopted from Snyder’s surface type classification. A simulation procedure is designed to calculate the emissivity variation along with different surface type combinations, solar-view angles, vegetation continuity, and the leaf area index. MODTRAN simulation analysis indicates that an error budget of over 1.4 K can be reduced in the LST retrieval if the correction of surface emissivity variation is applied. Several MODIS granule data are selected to evaluate the correction method. The results are compared with the current MODIS LST products 
Keywords: land surface temperature, LST algorithm, satellite remote sensing
1. INTRODUCTION

It is well known that knowledge of LST over large spatial and temporal scales is of fundamental importance to many applications, such as agrometeorology, climatic and environmental studies. Satellite remote sensing is the only means available to obtain regional and global LST on a synoptic and regular basis. Currently, those sensors such as Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA polar-orbiting meteorology satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observation systems (EOS) satellites are the major sources of the LST products. In the near future, the visible infrared imaging radiometer suite on board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) will replace the AVHRR and the MODIS as the nation’s wide-swath multispectral sensor following the launch of the NPOESS Preparatory Project (NPP) satellite around 2009. 
The physics behind the LST measurement from space is based on the theory of multiple radiative transfer process between the surface and the satellite sensor. By linearizing the radiative transfer equations at two adjacent thermal infrared channels, a split-window method was developed and had first been applied for sea surface temperature (SST) retrieval [1]. Applying the split-window method for LST retrieval is rather difficult, mainly because the emissivity of land surface is not close to unity (as is for SST retrieval) and is a variable of land surface type. Unfortunately, simulation studies have indicated that most split-window LST algorithms are sensitive to the emissivity variation [2]. Therefore, accurate land surface emissivity information is needed in the split-window LST algorithms. 

Currently there are basically two measures available to obtain the land surface emissivity information on a global basis. Snyder et al. [3] described a surface type-emissivity mapping method, in which each land surface type classified by the International Geosphere-Biosphere Programme (IGBP) was matched to a spectral emissivity value that was experimentally measured. This method is operationally simple yet statistically accurate in the thermal infrared channels for most of the IGBP types. Alternately, Wan et al. [3] developed a day-night algorithm that derives LST and surface emissivity simultaneously using multiple channel measurements of the same spot from day and night. The emissivity product is currently available through the MODIS MOD11 product. Emissivity derived from the day-night algorithm is expected to be more accurate than that derived from Snyder’s type-emissivity mapping method. However, availability of the data from the day-night algorithm is poor because the percentage of the cloud-free cases for the day-night pairs is very small in the total data stream.

Another concern, which is the focus of this study, is that both the above emissivity data do not provide directional information, meaning that the LST derived using the split-window LST algorithms assumed a Lambertian surface in the sensing spectrum range. This may introduce considerable error. Pinheiro et al. [5] demonstrated in their AVHRR LST retrieval using the Ulivieri’ split-window algorithm [6] that, for a structured vegetation surface, an artificial signal may be added along with the sensor view zenith angle. This directional effect is due to the fact that proportions of canopy and surface ‘endmembers’ (e.g., sunlit soil, shaded trees) visible to the sensor vary with the view angle, with the result that the ensemble surface emissivities of the two thermal infrared channels vary with the sun-view geometry. Due to the emissivity sensitivity of the split-window LST algorithm, the derived LST of the scene can vary with the sun-view geometric direction.

Currently, the above emissivity directional variation is not counted in most of the LST algorithms. Instead, a constant emissivity over the geometric direction is assumed.  In this paper, we investigated the LST directional changes due to the emissivity directional effect using simulation datasets generated by coupling a modified geometric projection (MGP) model to the MODTRAN radiative transfer model [7]. We demonstrated that a directional emissivity lookup table (LUT) could be established using the MGP model, which then could be applied for retrieving directional LST from satellite data. Using the MODTRAN radiative transfer model we illustrated the LST directional effect due to the emissivity directional effect. We then applied the LUTs on MODIS data and presented an emissivity directional effect corrected LST retrieval method using a variety of MODIS data.

The outline of this paper is as follows. In the following two sections, we provide details of simulation studies using the MGP model and the MODTRAN radiative transfer model, respectively. The simulation results are presented in Section 4. In Section 5, we apply the emissivity LUTs, that were generated in the simulation study of the MGP model, on the MODIS data for a directional effect corrected LST derivation. The newly derived LSTs are then compared to the MODIS LST product. Discussions of the simulation results and the MODIS data application are given in Section 6I. Finally, we present conclusions in Section 7.

2. simulation of the mgp model

2.1 Modified geometric projection model
Satellite sensor measures the land surface from pixel to pixel. Each pixel, with a certain resolution, is considered as an entirety of composed area consisted of a variety of endmembers (i.e., surface types). The satellite sensed LST is a representing temperature of the entirety, which was called ‘apparent’ temperature by some authors. The MGP model  assumes that 1) the radiance emitted from the composed area is a linear contribution of the radiances emitted by each endmember weighted by its projected fraction and, 2) the endmembers are isotropic emitters. In the model, each endmember is characterized by its temperature Tk, emissivity k, and a fraction cover probability Xk(, ), where  and  represent view zenith angle and relative sun-view azimuth angle, respectively. Assuming that the pixel is composed of N endmembers, the apparent temperature distribution T(, ) can be estimated through a linear combination formula, i.e.,
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with <> defined as the weighted mean of endmember emissivity, i.e.,
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Wavelength is omitted in the above equations, but the sensor central wavelength is implied.

It is important to point out that, although the endmembers are assumed as isotropic emitters, the ‘apparent’ emissivity ) and temperature T) are sun-view geometric dependent. This is because the cover probability of each endmember, Xk, varies with the sun-view geometric projection. It is also important to notice that the endmembers can be randomly distributed in a composed area. More details of the MGP model can be found in [5].

In implementing the MGP model, we applied the geometric optics (GO) component of the geometric optics bidirectional reflectance (GORT) model [8] for calculating the projected fractions Xk(, ). We consider the sensed pixels as discontinuing canopies composed of four endmembers: sunlit crow, shaded crown, sunlit background, and shaded background. This 4-component model was primarily used by Pinheiro et al. [5] in their study of LST directional effect in AVHRR data. The GO model simulates a scene of continuous canopies as a collection of spheroids on vertical sticks. Location of those spheroids follows a Poisson distribution. Boolean set theory was applied in the model to calculate within and between crown gap probabilities of the sticks.

2.2 Parameters of the MGP model
Running the MGP model requires a variety of input parameters. Table 1 lists those parameters and their values used in the simulation. Among those, the minimum and maximum tree heights, the crown height and diameter are the structural parameters of the canopy; the solar zenith angle, the view zenith angle and the solar-view relative azimuth angle are the solar-view geometric parameters; the temperatures of the four endmembers, the leaf area index (LAI) and the emissivities of the canopy and the ground are the endmember property parameters. The emissivities for sunlit and the shaded endmembers are the same, since emittance is a coherent property of the surface.


Table 1. Input parameters for the MGP model simulation 

	Parameter 
	Value

	Solar zenith angle (degree)
	0, 30, 60

	View zenith angle (degree)
	0, 10, 20, 30, 40, 50 60, 70

	Solar-view relative azimuth (degree)
	0, 180

	Sun lit canopy temperature
	Tsurf + 5

	Shade canopy temperature
	Tsurf

	Sun lit background temperature
	Tsurf +15

	Shade background temperature
	Tsurf

	Canopy emissivity
	In a range from 0.9650, 0.9911

	Ground emissivity
	In a range from 0.9400 to  0.9820

	Percentage of the canopy coverage
	10, 20, 30, 40, 50, 60, 70, 80, 90

	Minimum tree height
	5

	Maximum tree height
	15

	Canopy crown height
	5

	Canopy crown diameter
	2

	Leaf area index
	0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5


Note that, in Table 1, we used a variety range of values for different parameters except the tree structural parameters. Pinheiro et al. [5] pointed out that the emissivity directional dependency is dominated by the geometric and the property parameters, and the tree structural parameters are less important. In this study, we performed tests using different combinations of the tree structural parameters with a fixed set of the geometric and property parameters. The difference of the output emissivities is insignificant. Therefore, in our simulation analysis, we used a fixed value set for the minimum and maximum tree heights, the crown height, and the diameter. Temperatures of the endmembers were also fixed since we are more interested in the apparent surface emissivity change than the surface temperature change.

2.3 Directional emissivity lookup table
A lookup table of the directional emissivity can be generated using the above input combinations of the MGP model. Note that only the emissivities of the input parameters are spectrum dependent. By using different set of spectral values of the canopy emissivity and the ground emissivty, the directional emissivity LUT represents different sensor channels. In this study, we simulated the data for the MODIS bands 31 and 32, with the wavelength centered at 11.030 m and 12.020 m, respectively.

Six spectral emissivity values were adapted from Snyder et al’s emissivity classification study [1998], representing four tree cover types and two background types, respectively. The tree cover types are the evergreen needle leaf forest, the evergreen broad leaf forest, the deciduous needle leaf forest and the deciduous broad leaf forest; the ground types are the organic bare soil and the herbaceous. Emissivity value of the tree cover types was applied directly as the canopy emissivity (Table 1), while the background emissivity value was proportionally combined from the emissivities of soil ground and the herbaceous, i.e.,
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where g, s and h are the ground emissivity, the soild emissivity and the herbaceous emissivity, respectively; a and b are the proportions of soil and herbaceous components of the pixel, respectively .

Dimensions of the emissivity LUT for each channel include the view zenith angle, the tree cover percentage, the tree type, the soil ground percentage, the herbaceous cover percentage, and the LAI. As were shown in Table 1, the zenith angle was set from 00 to 700, with a 100 increment. It covers the MODIS view zenith angle range. The tree cover percentage range was from 10% to 90%, which implies that the background cover percentage range was from 90% to 10%, with a 10% increment. Note that the background cover is composed of the soil ground and the herbaceous. Among which, the soil ground proportion range is from 0.0 to 1.0 (therefore, the herbaceous proportion is from 1.0 to 0.0) with increment 0.1. The LAI range was set from 0.2 to 5.0. Increments of the LAI were 0.2 and 1.0 for the LAI ranges from 0.2 to 1.0 and from 1.0 to 5.0, respectively. The LAI increment was set to be smaller for LAI values less than 1.0 because, according to the definition of LAI, satellite sensed radiance from a surface that is partially covered by leaves is significantly different from the radiance of a surface that is fully covered by leaves.

Three solar zenith angels were selected in the table to test if the sun-geometry will affect the directional emissivity variation. Solar-view relative azimuth is set to be 00 and 1800, representing the same and opposite observation directions.

Finally, the surface temperature Tsurf is randomly determined, within a range from 270 K to 310 K, for the calculation of the directional emissivity LUTs.

3. simulation of the radiative transfer process

3.1 Radiative transfer model 
The atmospheric radiative transfer model used in this study is MODTRAN 4, version 2 reversion 1 [7]. The MODTRAN model simulates the spectral radiances from land surface received by satellite sensor through a certain atmospheric profile in a certain solar-view geometric direction. The model has been widely used in simulation studies of satellite remote sensing.

Following others [9][10][11], we simulated top of atmosphere (TOA) brightness temperatures of MODIS sensor at bands 31 and 32 using the MODTRAN code. Input parameters of the MODTRAN 4 model mainly prescribe vertical profile of atmospheric properties, the boundary surface temperature, the sensor spectral response function, the sensor view and solar (daytime only) geometry, and the surface emissivity. To determine realistic atmospheric profiles, we used the CrIS F98-Weather Products Test Bed data Package [12]. NOAA produced this set of 7547 profiles using both radiosonde and Television Infrared Observation Satellite Program (TIROS) Observational Vertical Sounder (TOVS) data. We selected 60 daytime cloud-free profiles acquired near 1000 and 1500 local time. The time is close to the equator crossing time of most solar-synchronous satellites. Only profiles with a cloud fraction index (as provided in the profile metadata) equal to zero were considered. The selected profiles spanned a latitude range from 600 South to 700 North, and a column water vapor range from 0.5 g/cm2 to 5.6 g/cm2. 

Surface emissivity and temperature of the MODTRAN input are the values calculated from the MGP model as described above, which vary with the solar-view geometric direction. The atmospheric low boundary air temperature of each profile is adapted as the Tsurf value in Table 1.

The MODIS sensor of AQUA satellite, band 31 and 32, spectral response functions were applied, for generating the sensor’s TOA brightness temperatures at the central wavelengths around 11 m and 12 m, respectively.

More details of the MODTRAN simulation and the input parameter setting can also be found in [13].

3.2 Split-window LST algorithm
The LST retrieval algorithm used in this study is a path corrected split-window algorithm developed by Yu et al. [2], i.e.,
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where, T11 and T12 are the TOA brightness temperatures at the two thermal infrared bands, respectively;  and  are the mean surface emissivity and the emissivity difference between the two bands, respectively;  is the satellite view zenith angle; Ak (k=0 to 5) are the algorithm coefficients. This is a modified version of the split-window LST algorithm used by Ulivieri et al. [6] and Sobrino et al. [14] in their LST retrieval using AVHRR data. Yu et al. [2] pointed out that a path correction term, the last term in equation (4), should be added for correcting a directional effect of atmospheric absorption. This correction is a necessity in this study because we need to exclude other directional effects as much as possible for analyzing the emissivity directional effect. The algorithm is selected because it is simple while representing those split-window LST algorithms that contain both the emissivities and emissivity difference. Coefficients of the algorithm, Ak, were derived through a regression analysis on the simulation data, as was described by Yu et al., [2].
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           Fig. 1. Simulation processing scheme for evaluating the emissivity directional effect in LST retrieval.

For evaluating the emissivity directional effect in LST retrieval, the MODTRAN simulation is coupled with the MGP model simulation. Figure 1 illustrates the simulation processing scheme. First, the MGP model settings are prepared for generating the apparent surface temperature and emissivities. Note that those temperatures and emissivities are solar-view geometric dependent. The MODTRAN simulation model takes those temperatures and emissivities, as well as the atmospheric profiles and the sensor response functions, as input cards and simulates radiances that the satellite sensor received at the top of atmosphere. The simulated radiances are then converted into the TOA brightness temperatures of the respective two thermal infrared bands. At this stage, the split-window LST algorithm is applied to calculate the satellite derived LST using the simulated brightness temperatures and the apparent emissivities.
4. simulation results

4.1 MGP simulation results

Examples of the MGP model simulation are shown in Figures 2 and 3. Left panel of Figure 2 represents an example case of the MGP model parameter setting that the tree cover percentage is 30%, the LAI is 1,  emissivities of the tree cover and the background for the MODIS sensor (band 31, band 32) are (0.9890, 0.9909) and (0.9450, 0.5600), respectively, and the Tsurf is assumed to be  292 K. In the figure, the bowel-shaped solid curve represents the mean apparent emissivity to the satellite sensor, which increases sharply with increase of the view zenith angle. The emissivity difference between the view zenith at nadir and at the edge is about 0.014, which is a significant change in the LST retrieval. Also, three apparent LST curves are shown in the figure, representing three solar zenith angle settings, respectively. It is observed that, for each solar zenith angle, the apparent temperature at and near the view zenith of solar reflecting angle is much higher than the temperatures in other angles. The temperature difference between the ridge and off-ridge is about 2 degrees K, indicating that solar reflection has significant contribution in the total radiance budget in this direction.  Note that the emissivity distribution does not change with solar zenith because emissivity of a certain surface type does not change with its sunlit or shade condition.
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Fig. 2.  Examples of the surface temperature (dash lines) and mean emissivity distribution (solid line) along with the satellite view zenith angle. LAI value is 1, vegetation coverage is 30% (left) and 60% (right). 

Another example of the apparent emissivity and temperature distributions is also shown in Figure 2 (right panel), where all the parameters are the same to the left panel except that the tree cover percentage is 60%. In this panel, similar features are observed, and the emissivity difference between the view zenith at nadir and at the edge is about 0.014 also. However, it is worth to pointing out that, due to the vegetation cover increase (from 30% to 60%), the absolute value of the apparent emissivity is a little bit larger than that in the left panel. Therefore, the apparent temperature of the surface is a little bit lower than that in Figure 2. This is expected since emissivity of the vegetation in the thermal infrared band is bigger than that of the soil background.

Figure 3 further illustrates that the apparent emissivity varies with the vegetation cover percentage as well as the view zenith angle and the LAI. The variation is higher in the large LAI index (right panel) than that in the low LAI index (left panel). It is also shown that the emissivity variation along with the vegetation cover percentage and the view zenith is continuous. This is also true in the LAI dimension though it could not been shown in the figure. The continuity feature of the directional emissivity is important for performing interpolation between the incremental dimensions, which will be applied in our MODIS data application in Section 5.
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Fig. 3.  Examples of the directional emissivity distributions along with the satellite view zenith angle and the vegetation coverage. LAI value is 1 (left) and 3 (right), respectively.
4.2 MODTRAN simulation results

In the MODTRAN simulation, we focused on how the LST retrieval would be impacted by the directional emissivity due to different surface vegetation cover percentage and LAI values. We compared the difference between the LST derived using the directional emissivity, hereafter referred to as D-LST, and the LST derived using a constant emissivity at the nadir view, hereafter referred to as LST. Figure 4 shows two examples under the atmospheric profile identified as IPR06065. LAI is set to be 1, while the vegetation cover is 30% (left) and 60% (right). In the figure, it is clearly observed that the D-LST is lower than the LST in the view zenith angles off the nadir; the further the zenith from the nadir the bigger the difference. It is also seen that the differences are almost identity in different solar zenith angles. Note that maximum difference between the D-LST and the LST is increased a little bit in the right panel, because the emissivity of the vegetation component is bigger than that of the soil ground component.
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Fig. 4. Example plots of the LST retrieval difference between using the directional emissivities and using a constant emissivity. The temperature and emissivity distributions are calculated from the MGP model with the table 1 settings, for solar zenith angle at 0, 30 and 60 degrees, respectively; the LAI value is 1 and the vegetation coverage is 30% (left) and 60% (right). 
In Figure 5, we plotted all the retrieved D-LSTs and the LSTs using all the atmospheric profiles and all the vegetation cover percentage and the LAI combinations. The low boundary temperature range of the atmospheric profiles is approximately 270 K to 315 K. Differences between the D-LST and LST are shown in the scattered plots away from the diagonal line. Because the plots include all the view zenith data, it shows a continuity distribution in all the temperature range. The plots scattered most away from the diagonal line represent the data with the largest view zenith angles. The maximum D-SLT and the LST difference in all the results is about 1.45 K, meaning that an error budget up to 1.45 K due to the emissivity directional effect could be corrected.
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Fig. 5. The LST retrieval difference over all the simulation data
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Fig. 6. Distribution of the maximum LST retrieval difference 


To further understand the LST difference corresponding to the vegetation cover percentage and the LAI, in figure 6 we present a 3-D LST difference distribution with the vegetation cover percentage and the LAI. The maximum LST difference is defined as the data from the simulation results of all the atmospheric profiles with certain vegetation cover percentage and the LAI. It is illustrated that the maximum LST difference is dominated by the vegetation cover percentage. This is particularly true when the LAI is less than 2. Note that the maximum LST difference varies sharply in the vegetation cover percentage lower than 50%. Beyond that, changes of the LST difference are rather flat.

5. modis data application

We further demonstrated the directional effect in the MODIS LST data. The MODIS LST swath product was derived using a generalized split-window algorithm, in which the surface emissivity value was primarily obtained from the surface classification maps. In other words, it used a constant emissivity value for all the view zenith direction. We therefore expect that there would be errors involved due to the directional effect.

Four MODIS swath (5-minute scene) data were collected to demonstrate the directional effect, which were acquired onboard the MODIS Aqua in March, 2004. Considering that the LST directional effect will mostly occur over vegetation structured surface, we selected the MODIS scenes covering the north-east of the United States where forest trees are the dominant surface types.

A list of the MODIS products and ancillary data were acquired for deriving the D-LST. First, the MODIS radiance data (MOD02) was collected for calculating the TOA brightness temperatures. The cloud mask data (MOD35) was used for  filtering the cloudy data, where only the “confident cloud-free” (a cloud mask index value) pixels were left for further processing. For estimating the directional emissivity, we collected the vegetation continuity field (VCF) and the LAI data of the land surface from Boston University [15]. The VCF is an annual data set accumulated before 2002; here we assumed that since then, the VCF distribution in north-east of the United States is statistically not significant. The VCF data provides probabilities of tree cover, the soil cover and the herbaceous cover for a ground area. The LAI data is a monthly mean product available since February, 2000. Both the VCF and LAI datasets are 0.5 km ground resolution and are in the integerized sinusoidal projection. Finally, the MODIS geometry data (MOD03) was used for projecting the VCF and LAI data onto the swath latitudes and longitudes. There were four tree cover types in the VCF data: the green needle forest, green broadleaf forest, senescent needle forest and senescent broadleaf forest. The pixels that only contain the tree cover types were used in this study. The VCF data also provides two types of the ground types: the soil and the herbaceous. Emissivity of the background is calculated using equation [3].  
The directional emissivities of the MODIS bands 31 and 32 are estimated from the lookup tables (LUTs) generated through the MGP model simulation described in Section 2. One LUT represents a tree type and a band. Dimensions of the LUT are the view zenith, the tree cover percentage, the soil cover percentage and the LAI. The nadir view emissivity values of each tree type and the background types were estimated from Snyder et al.’ classes [3].  Incremental values of the corresponding dimensions were shown in Table 1. In the processing, we first obtained the view zenith and the latitude/longitude information of the pixel from the MOD03 dataset. We then projected the pixel location for obtaining the tree cover percentage and the soil cover percentage as well as the tree type information from the VCF dataset, and the LAI value from the LAI dataset. Finally, a bi-linear multi-dimension interpolation process was performed to calculate the directional emssivities from the LUTs.

The D-LST was calculated using the directional emissivities and the TOA radiance data, through the split-window LST algorithm (Eq.4). It then compared with the MODIS LST product. It is important to point out that the MODIS VCF and the LAI data are experimental products; the quality of the products is not fully understood. Errors in the VCF data and the LAI data will be transferred in the D-LST and such errors are hard to estimate, and as a result, comparisons between the D-LST and MODIS LST for individual pixels are less meaningful.  However, if we assume that for large amounts of pixels the D-LST errors due to the errors of VCF and LAI data are in a certain distribution, then a statistically meaningful comparison between the D-LST and the MODIS LST is possible. In this study we compared the D-LST and the MODIS LST using histogram plots over 549,240 pixels collected from the four MODIS scenes.

Figure 7 shows the comparison results. To better illustrate the emissivity directional effect in the MODIS LST product, we plotted the histograms of the D-LST and the MODIS LST difference in three view zenith angle ranges (top three panels), as well as in a total view zenith range (bottom panel).  Looking at the top panel of Figure 10, which represents the results for the view zenith angle range from 00 to 200 degree, the difference of D-LST and the MODIS LST is primarily a normal distribution biased negatively. The normal distribution difference and the bias can be explained by the fact that since the two LSTs were produced independently from different algorithms and, in each algorithm, there were a variety of errors sources. However, it is observed that the tail part at the negative direction is longer than that in the positive direction. This negatively biased tail feature is getting more and more obvious in the view zenith angle range from 200 to 450 (upper-middle panel) and in the range from 450 to 650, indicating that more and more D-LSTs were negatively biased comparing to the MODIS LST as the view zenith angle increased. The standard deviation of the D-LST and the MODIS LST difference is therefore increased when the view zenith increased. This is exactly the emissivity directional effect feature that we observed in the simulation results.
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Fig. 7.  Histogram plots of LST difference between the D-LST and the MODIS LST (MOD11). The statistics was calculated from 4 scenes of MODIS 5-minute swath data in March, 2004, north-east of the United States.

6. discussion

Our MGP model simulation results demonstrated that a structured vegetation surface may have considerable emissivity variation along with the satellite sensor view zenith angle (figure 2), the vegetation and the background types, the vegetation LAI, and the vegetation coverage. The view zenith dependency, which is the focus of this study, results from the variation of the satellite viewed surface components with the view zenith due to the surface structure. The emissivity directional variation is a secant-like distribution to the view zenith angle, which implies that emission property of the composed surface is dominated by the projected viewing area of the vegetation surface   A dense tree cover, i.e. large LAI, will also increase its projected view area and therefore will considerably increase the emissivity directional variation. This is observed through figure 3.  It is obvious that the directional emissivity varies with the vegetation coverage due to the increase of the high emission component.

It is important to note that the directional emissivity variation does not change with the solar angle, because the emission property of a surface component is independent of its temperature, and therefore a component with or without sunlit does not change its emissivity.

The directional emissivity variation directly affects the LST retrieval. In the MODTRAN simulation, we observed that the D-LST is less than the LST at the off nadir views (figures 5 and 6). The difference between the D-LST and the LST may be considerably large when the view zenith is larger than 400, and can exceed 1.4 K at the edge. It is likely a reversed secant distribution along with the view zenith. It may have a large impact on retrieving the LST from cross-scan satellite sensors. For instance, about 40% LST data retrieved using MODIS sensor, which measures the surface in a view zenith range from 00 to 650 , may be significantly overestimated.

Note again that the differences are almost the same for different solar zenith angles, which verifies that surface emission property does not change with the sunlit. It is also interesting to note that, although there is a temperature ridge occurring at the solar reflect angle in the surface temperature directional distribution, the temperature difference between the D-LST and the LST is not affected by the solar reflectance.  The split-window LST algorithm detected the temperature ridge by the TOA brightness temperatures and the difference of the brightness temperatures.

Our MODIS data application indicates that there is a tail structure coupled on the normal-like distribution of the histogram of the D-LST and the LST difference. Assuming that the normal-like distribution was introduced because of the algorithm difference and the data noise, figure 7 demonstrates the emissivity directional effect in the LST retrieval: the retrieved LST with a directionally independent emissivity may be overestimated in the off nadir view zenith angles.

There are two ways to correct the directional effect. As is shown in the MODIS data application, we used the LUTs of the directional emissivity to replace the constant emissivity in the LST algorithm. In which, the LUTs are based on the MGP model, while the LUT indices are calculated at runtime using the ancillary data such as the VCF data and the LAI data.

Alternatively, the D-LST can be reached by adding a directional correcting amount, Ts, on the traditional LST. The directional correcting amount can be a LUT generated by coupling the MGP model and the MODTRAN radiative transfer model. In this study we calculated the LUT and applied it to the MODIS data. Comparison results (shown here) between the directional effect corrected LST using the Ts LUT and the MODIS LST are pretty much the same as figure 7.

7. conclusion

We presented our simulation study and the MODIS application results of the emissivity directional effect and its impact on the LST retrieval. It is shown that, due to the structured vegetation surface, emissivity of a satellite sensed pixel of land surface may be considerably different from the nadir view to the edge. The directional variation of the surface emissivity therefore may introduce error in the LST retrieval using the split-window algorithm. Maximum LST error introduced by the emissivity directional effect may exceed 1.4 K, which is significant in many LST applications.

We also presented a method of correcting the emissivity directional effect using pre-calculated LUTs. Dimension indices of the LUTs can be determined using the current MODIS data and its ancillary data.  Applying the method on MODIS data, we identified the LST error of the directional effect in the MODIS LST data.

The LST error of the emissivity directional effect is considerably large when the view zenith is larger than 400. In the MODIS case it means that about 40% of the MODIS LST data may be significantly overestimated. We proposed a method to correct the error using a pre-calculated LUT. Further studies are needed to apply the method on MODIS data.
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