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Abstract  

A method is presented to evaluate the adequacy of the recent in situ network for 

climate sea surface temperature (SST) analyses using both in situ and satellite 

observations. Satellite observations provide superior spatiotemporal coverage but with 

biases; in situ data are needed to correct the satellite biases. Recent NOAA/U.S. Navy 

operational AVHRR satellite SST biases were analyzed to extract typical bias patterns 

and scales. Occasional biases of 2oC were found during large volcano eruptions and near 

the end of the satellite instruments’ lifetime. Since future biases could not be predicted, 

the in situ network was designed to reduce the large biases that have occurred to a 

required accuracy. Simulations with different buoy density were used to examine their 

ability to correct the satellite biases and to define the residual bias as a potential satellite 

bias error (PSBE).  

 The PSBE and buoy density (BD) relationship was found to be nearly 

exponential, resulting in an optimal BD range of 2-3/10ox10o box for efficient PSBE 

reduction. A BD of 2 buoys/10ºx10o reduces a 2oC maximum bias to below 0.5oC and 

reduces a 1oC maximum bias to about 0.3oC. The present in situ SST observing system 

was evaluated to define an equivalent buoy density (EBD), allowing ships to be used 

along with buoys according to their random errors. Seasonally averaged monthly EBD 

maps were computed to determine where additional buoys are needed for future 

deployments. Additionally, a PSBE was computed from the present EBD to assess the in 

situ system’s adequacy to remove potential future satellite biases. 
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1.  Introduction 

Historically, ocean observations have been made for a variety of purposes by 

various groups. Although these observations provided important information about the 

ocean, the purposes and groups did not necessarily provide an optimal observing system 

for climate monitoring and study. Over the last few decades, international groups have 

begun designing a Global Ocean Observing System (GOOS) as a component of the 

Global Climate Observing System (GCOS). An international “Ocean Observing 

Conference for Climate” was held in Saint Raphael, France in October 1999 to help 

produce a better integrated system (Koblinsky and Smith, 2001). Sea surface temperature 

(SST) was one of the important parameters considered at the conference. The purpose of 

this paper is to examine the present in situ and satellite observing system and to 

recommend how future in situ observing system should be improved to efficiently correct 

satellite biases for climate SST. 

The present SST observing system consists of in situ and satellite observations as 

discussed by Reynolds et al. (2002). In situ observations are made from ships and buoys 

(both moored and drifting). For historical reasons, error information is not always 

available for each observation. To our knowledge, the most extensive studies on the in 

situ SST random error are Kent et al. (1993 and 1999), Parker et al. (1995), and Emery et 

al. (2001). They studied the effects of different instrumentations, instrument layouts (e.g., 

at different depths, drifting versus moored buoys), and different observation techniques. 

Based on the above, Reynolds and Smith (1994) and Reynolds et al. (2002) estimated that 

typical random errors are 0.5 and 1.3°C for buoy and ship observations, respectively.  
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Satellite observations have provided dramatically improved coverage in time and 

space. Over the last two decades, the satellite coverage has expanded from one infrared 

(IR) instrument to the present day array of multiple IR and microwave instruments. 

Satellite random error for the Advanced Very High Resolution Radiometers (AVHRR) 

SST was discussed by McClain et al. (1985) and May et al. (1998). Reynolds and Smith 

(1994) and Reynolds et al. (2002) estimated that typical random errors are 0.5 and 0.3°C 

for daytime and nighttime operational NOAA (National Oceanic and Atmospheric 

Administration)/U.S. Navy AVHRR SSTs, respectively.  

The high satellite data coverage reduces sampling and random errors in SST 

analyses using combined in situ and satellite data. For example, application of the 

optimal averaging (OA) procedure of Smith et al. (1994; also Kagan 1979) on 5° monthly 

ship, buoy and AVHRR SST observations shows that the OA random and sampling 

errors are typically less than 0.2oC for the 1995-2002 period (not shown). In regions with 

sparser satellite data due to cloud cover, the monthly OA analysis errors increase only to 

0.3oC. Including more recent satellite data [the Tropical Rainfall Measuring Mission 

(TRMM) Microwave Imager (TMI, Kummerow et al. 1998; Wentz et al. 2000), the 

Along Track Scanning Radiometer (ATSR, Mutlow et al., 1994), the Advanced 

Microwave Scanning Radiometer (AMSR-E, e.g., Wentz et al. 2003), and the Moderate 

Resolution Imaging Spectroradiometer (MODIS, Esaias et al. 1998)] further reduces the 

OA errors.  However, satellite bias error remains significant as will be shown below. 

Bias error is the systematic difference between one instrument or a set of 

instruments (e.g., those onboard satellites) and another (e.g., those used for in situ 

observations). As shown in Zhang et al. (2004), the NOAA/U.S. Navy operational 
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AVHRR SST biases have changed over time, and they can be as large as 2°C. Similar 

biases can occur with other satellites [e.g., Reynolds et al. (2004) discussed biases in the 

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager retrievals]. Satellite 

biases change with time due to orbit changes, aging of satellite instruments, and changes 

in atmospheric conditions which may differ from those used in the development of the 

satellite SST retrieval algorithms (e.g., unexpected volcanic aerosols). These biases 

needed to be corrected to minimize systematic errors in climate SST analyses.  

There are a large number of SST analyses on different time and space scales 

produced from combinations of different parts of the in situ and satellite observing 

system. This paper focuses on climate scales. Following Reynolds et al. (2002), these 

scales are defined to have temporal resolutions of one week or longer and spatial 

resolutions of 1o or larger. A version of higher resolution analysis (daily and 0.25 o) has 

been planned. However, that will not change the results of this study on the needed buoy 

density since the conclusions are drawn from satellite biases of larger scales (section 3). 

The Reynolds and Smith (1994) and Reynolds et al. (2002) SST product, often 

referred as Reynolds SST, has been widely used by the climate community, although it 

has been produced operationally on weekly basis. In the present study, we use their 

optimum interpolation (OI) and bias correction techniques to determine the optimal in 

situ data density for efficient bias reduction. Consistent with the operational Reynolds 

SST product, the NOAA/U.S. Navy operational AVHRR SST is used in this study. Note 

that other reprocessed AVHRR SSTs exist, such as the Pathfinder AVHRR SST 

(Kilpatrick et al. (2001). Early versions of the Pathfinder AVHRR SST had biases as well 

and the biases were not necessarily smaller than the operational AVHRR SST (Reynolds 
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et al. 2002). Since then, improved Pathfinder AVHRR SST has been produced with 

reduced biases (information and data available at 

http://www.nodc.noaa.gov/sog/pathfinder4km). It is planned that the next version of the 

Reynolds SST will be based on the new Pathfinder AVHRR SST together with other 

satellite SST. Once this is done, the work presented here will be re-evaluated.  

Details of the OI and bias correction techniques can be found in Reynolds and 

Smith (1994) and Reynolds et al. (2004). Briefly, the OI objectively determines a series 

of weights for SST data increments at each grid point. The data increment is the 

difference between each observation and the analysis first guess value. Reynolds and 

Smith (1994) used the previous week's analysis as the first guess in their weekly analysis 

on a 1ospatial grid. The OI method assumes that the data do not contain long-term biases 

(e.g., see Lorenc, 1981). Because satellite biases occur, an optional step using a 

correction based on Poisson's equation can be carried out to remove satellite biases 

relative to in situ data prior to the OI. This step produces an adjustment of the satellite 

data, anchoring it to the in situ data and matching the gradients of the two fields. In the 

OI procedure, various error statistics are assigned that are functions of latitude and 

longitude. In this work, two changes were made in the OI procedures. First, the analysis 

was computed on monthly time scales instead of weekly. Second, the first guess was 

taken as the monthly climatology in the buoy need simulations (see section 4 for details). 

The remainder of the paper is organized as the following. Section 2 presents the 

strategy for this study. Section 3 presents the typical satellite SST bias patterns extracted 

from an empirical orthogonal function (EOF) analysis. Section 4 presents the relationship 

between in situ data density and satellite bias reduction rate. Section 5 evaluates the 
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adequacy of the present in situ system, and recommends where to deploy additionally 

needed buoys. Section 6 presents a discussion and summary. 

 

2.  Study Strategy 

 This section outlines the overall strategy of this study. To correct the satellite 

biases with respect to in situ data, we first need to understand the spatial scales and 

magnitudes of the biases. The in situ data density requirement for bias correction depends 

on the spatial patterns of the satellite biases. For example, if the biases were globally 

constant, only one accurate in situ observation would be needed to correct the constant 

bias. Generally, the more complicated the bias spatial pattern, the more in situ 

observations are needed. The spatial patterns of the major biases are characterized by an 

EOF analysis in section 3 for the historical NOAA/U.S. Navy operational AVHRR SST, 

the longest satellite SST record. Because future satellite biases cannot be predicted, we 

simulate them using the historical bias patterns, reconstructed from the EOF spatial 

modes. We then design an in situ network to sufficiently correct all the bias to a desired 

accuracy. 

 In section 3 we show that the major bias EOF modes are linked to physical 

phenomena in the atmosphere, such as aerosols from volcano eruptions and seasonal 

variations of clouds and desert dust aerosols. Because each of the physical phenomena 

can occur independently, the designed in situ network has to be able to correct bias 

caused by each EOF as well as the composite. Thus, in the determination of the needed in 

situ data density, we simulate the bias regime corresponding to each EOF spatial mode 

separately. To assure that the in situ system can deal with biases associated with 
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simultaneous multiple phenomena, each simulated bias case (each EOF spatial pattern) is 

scaled to a maximum total (composite) bias magnitude. This is certainly a conservative 

strategy since under normal conditions not all types of biases occur at the same time. 

However, this is necessary since future occurrences of biases cannot be predicted and the 

designed in situ system has to be able to deal with the worst cases. 

 Once the representative biases (EOF spatial modes) and magnitudes are chosen 

(section 3), a Monte Carlo simulation is used to simulate the bias variations in time 

(section 4). Simulations are run with various in situ data density to determine an optimal 

in situ density for efficient error reduction.   

 

3.  Satellite SST bias scales and patterns 

To design a better in situ network to correct potential satellite biases, it is 

necessary to examine the typical scales and patterns of historical biases. The objective is 

to extract the dominant components of the biases, and to use them to simulate typical bias 

regimes. This is done using EOF analysis (e.g., Davis 1976) of the satellite biases.  

Briefly, the EOF analysis decomposes the multivariate bias into orthogonal modes, where 

a small number of the modes often contain the major part of the data variance.   

Ideally, the biases could be computed at co-located positions of satellite and in 

situ data. However, the sparseness of the in situ data hinders extracting the spatial scales 

and patterns. Thus the OI technique of Reynolds and Smith (1994) was used to compute 

the OI SSTs on a regular 1° spatial grid with monthly in situ and AVHRR satellite data 

(Zhang et al. 2004). To define the satellite biases, two OI SSTs were computed, one with 

and one without the satellite bias correction step. The satellite bias was then defined as 
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the difference between the two OI SSTs. Because the bias was defined with reference to 

the in situ data, which was sparser at high southern latitudes, the bias might be 

underestimated there. This underestimation was not critical because our goal was to 

extract the bias spatial scales. As will be shown in section 4, it is the bias spatial pattern, 

not the bias magnitude, that determines the optimal in situ data density range for efficient 

bias reduction.  

The bias analysis was detailed in Zhang et al. (2004) for 1982-2002. Here the bias 

EOFs for 1990-2002 were recomputed for the design of the in situ network. The 1982-

1989 data were not used because the buoy data, which are of critical importance in the 

tropics and Southern Hemisphere, were sparser in the 1980s, as discussed in Reynolds et 

al. (2002). However, the major EOF features for the two time periods are very similar.  

 The total bias was first separated into the time mean and the deviation from the 

mean. Fig. 1a shows the bias mean for the 1990-2002 period. Fig. 1b shows the root-

mean-square (RMS) of the bias with the mean removed, and is referred as the bias 

standard deviation. The mean bias is primarily negative in the open ocean, most likely 

due to cloud and aerosol contamination on the satellite retrievals. The magnitudes of the 

mean bias are larger in the tropics, especially in the eastern Pacific and Atlantic and 

western Indian Ocean, with largest magnitudes found in the tropical Atlantic where they 

exceed 0.5oC, largely due to dust aerosol (e.g., Haywood et al. 2001). Positive means can 

be seen along the coasts of North America, with weaker values off  the coasts of Asia 

roughly north of 40oN as well as off parts of the coasts of Africa and South America. The 

time variation of the biases, represented by the bias standard deviation (Fig. 1b), is 

generally smoother in space, and the variations are small along 20oN and 20oS and large 
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along the equator and 40oN and 40oS. The largest variations exceed 0.4oC. The drop in 

both bias mean and standard deviation south of about 50oS is most likely due to 

uncorrected satellite biases due to the lack of in situ data. When the bias mean and 

standard deviation are combined into the total RMS bias (not shown), the maximum 

values can exceed 0.6oC.  

The bias EOFs were computed with the bias mean removed. Fig. 2 shows the 

EOF spatial patterns and time series for modes 1 to 6. Mode 1 reveals biases primarily 

due to stratospheric aerosols from volcanic eruptions, with large scale zonal tropical 

biases. These biases can last for several months. Modes 2 and 3 are seasonal biases, 

which are strongly related to local weather phenomena, such as seasonal dust aerosols 

and cloud covers. Mode 4 represents a bias trend in time. Modes 5 and 6 indicate 

interannual variations. Mode 6 shows the strongest loadings in the middle latitude 

Southern Hemisphere. This is an important mode to include in the simulations below, 

because in situ data are sparse south of roughly 40oS. Immediately higher modes show 

similar spatial scales. Much higher modes show smaller scales and more scattered spatial 

features that may reflect the increased role of data noise. Taken together, the first six 

EOFs represent 52.7% of the total variance (Fig. 3). As shown in the next section, the 

buoy need density for bias correction generally increases as the mode number increases 

from 1 to 4, and the buoy need density is similar for modes 4 through 6. 

 

4.  Optimal buoy density for efficient satellite bias reduction 

In this section, we study the relationship between the in situ data density and the 

bias error reduction rate. The relationship was quantified for various bias patterns, 
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represented by the bias EOF modes computed in the previous section. As outlined in the 

strategy in section 2, each of the EOF modes was treated as a typical bias regime that 

could happen independently, and each bias representation was scaled to a composite bias 

magnitude to assure that the in situ system can reduce each bias mode as well as 

composite bias from multiple modes to a required accuracy. The simulations used a 

maximum bias of 2°C to simulate a worse case as discussed in section 3 and detailed in 

Zhang et al. (2004).  

To study the response of bias correction to changes in buoy density, the satellite 

SST values were simulated as the monthly climatology (as the assumed ground truth) 

plus the representative biases (scaled EOFs) at the locations of actual satellite 

observations. This was done monthly between 1990 and 2002.  The monthly climatology 

was formed using the 1990-2002 monthly OI SSTs, which was computed using the 

version with the bias corrected data. The buoy need density for satellite bias correction is 

not sensitive to the choice of the climatology. To simulate the satellite data over the 156-

month (1990-2002) period, a time varying amplitude function is needed for the EOF 

spatial patterns for more realistic simulations. The time amplitude is defined as a 

Gaussian random time series, with a mean of zero and a standard deviation of one. 

Consequently, the RMS (in time) of the simulated bias has a maximum value of 2oC over 

the global ocean. The simulated satellite SST can be expressed as  

   Tsi(x,t) = Tg(x,t) + EOFi(x) a(t),      for i=1 to 6.  (1) 

Here Tsi(x,t) is the simulated satellite SST, and Tg(x,t) is the climatology, which is used as 

the ground truth. EOFi(x) is the EOF spatial mode i with the simulations run for each 

mode separately as outline in section 2. The Gaussian random time amplitude is 
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represented by a(t). The variable t is the time in months from t = 1 to 156 (January 1990 

to December 2002), and x is the vector location of each satellite observation. Random 

noise was not added to satellite data because of the high data density, which reduces the 

random errors to insignificant levels compared to the bias errors.  

Buoy SST values were simulated as the ground truth Tg(x,t) plus typical random 

buoy SST error. To study the response of bias correction to changes in buoy density, the 

buoy data were placed on regular grids with various grid resolutions for the multiple 

simulations. For each grid resolution, one buoy was placed at each grid point. For sparser 

buoy data, data noise becomes more important. Thus a Gaussian random noise was added 

to the simulated buoy SST value. As discussed in section 1, the buoy SST error in the OI 

was defined to be 0.5°C (Reynolds and Smith 1994). Thus, the simulated buoy SSTs 

were expressed as 

   Tb(x,t) = Tg(x,t) + 0.5 e(t).          (2) 

Here Tb(x,t) is the simulated buoy SST,  and e(t) is the Gaussian random time series with 

a zero mean and standard deviation of 1.  

The OI analysis with bias correction was then applied on the simulated satellite 

and buoy data. By design, the monthly climatology would be the expected result of the 

OI SST if the satellite biases were completely removed. The difference between the OI 

SST with bias correction and the monthly climatology is the uncorrected residual bias, 

which is evaluated as a function of buoy density. Intuitively, if there were no in situ data 

available, any satellite biases would be uncorrected. In contrast, if the buoy data were 

densely distributed over the global ocean, all the satellite biases would be nearly 

completely removed with reference to the in situ data. The objective here is to determine 
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the response of bias reduction rate to the buoy density and to define a threshold buoy 

density for a required SST accuracy.  

 Residual uncorrected SST biases were computed over the global ocean for each 

month over the simulation period. The residual biases were any biases that could not be 

eliminated by the simulated buoy density.  The RMS of the residual bias was defined as 

the potential satellite bias error (PSBE). We refer to this as potential bias because the 

simulated satellite bias was set to a maximum of 2oC over the global open ocean, which 

is representative of the larger satellite biases observed over the satellite period. 

 The PSBE was computed over the simulation period. Fig. 4 shows examples of 

the PSBE for simulated bias regime of EOF mode 1 (scaled to 2°C in spatial maximum). 

If there were no buoy data, the PSBE would be the absolute value of the simulated bias 

(scaled EOF mode 1, Fig. 4a). For a buoy grid resolution of 20° (Fig. 4b), the biases were 

greatly reduced, but the PSBE exceeded 0.5°C at a few locations. At buoy grid resolution 

of 7° (Fig. 4c), all PSBEs were reduced to less than 0.4°C.  

The spatial maximum of the PSBE over the global ocean was computed as a 

function of the buoy grid resolution. This was done for each of the six EOF bias 

representations. It was first found that the global one-point maximum of PSBE was 

somewhat unstable at larger (>12°) buoy grid resolutions. To obtain a more stable curve, 

an average PSBE was computed over a defined area surrounding the single point 

maximum. The averaging area was defined as the locations where |EOF| > 1oC. (Note 

that as stated earlier, the maximum for each EOF had been scaled to 2°C.) To convert the 

area averaged PSBE to the corresponding maximum residual bias error, the averaged 
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PSBE were scaled up so that the averaged PSBE value would still be 2oC when there 

were no buoys. 

Fig. 5 shows the adjusted PSBE as a function of the buoy grid resolution for the 

six EOF bias representations. In this figure, biases of modes 1 to 3 are relatively easy to 

correct because of their larger spatial structures. Mode 1 has near global zonal scales 

(Fig. 2). Modes 2 and 3 are of basin scales in the northwest North Pacific and North 

Atlantic. The curves for modes 4 to 6 are similar to each other due to their similar spatial 

scales even though their individual spatial patterns are different. Modes 4 to 6 have more 

stringent requirements because of their smaller spatial scales.  

Because of their similarity, the curves for modes 4, 5 and 6 in Fig. 5 are averaged, 

with the average curve shown in Fig. 6a as the solid line with circles. Overall, the PSBE 

and buoy data grid resolution has a nearly linear relationship, although the mid section 

has a slightly steeper slope (quicker error reduction). The dashed line is a linear least-

square fit to the data: 

   075.0060.0 0 += dPSBE      (3) 

where d0 is the grid resolution (decreasing from 20° to 2°). This fit has a RMS residual 

error of 0.04°C compared to the actual PSBE values (circles). 

  Surface drifting SST buoys are normally deployed in clusters for practical 

reasons. Hence it is desirable to plot the PSBE curve as a function of buoy density (BD) 

in a defined grid box. Fig. 6b shows the PSBE with respect to the BD with a fixed grid 

resolution of 10°x10° (denoted as BD10). Mathematically, the conversion from the 

horizontal axis of Fig. 6a [i.e. one buoy at each grid point (BD0 =1) with grid resolution 

d0] to the horizontal axis of Fig. 6b (i.e. number of buoys per 10°x10° box, BD10) is   
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    BD10 = BD0 ( 2
10d / 2

0d ),  for d0 =20 to 2. (4) 

Here d10 = 10°.  

In Fig. 6b, the solid curve with circles and the thick dashed curve were directly 

converted from those in Fig. 6a through (4).  With BD0 =1, a combination of (3) and (4) 

results in the dashed curve in Fig. 6b as:  

    075.0
*06.0

10

10 +=
BD

d
PSBE .    (5) 

Fig. 6b shows a very rapid (near exponential) bias reduction for BD10 < 3, and 

levels off thereafter. Thus BD10 < 3 can be defined as the optimal bias reduction range. 

The optimal buoy density for bias reduction can be defined between 2 and 3 in a 10° grid 

because it is the buoy density at the end of the rapid bias reduction.   

 

5. Equivalent buoy density (EBD) and new buoy requirement 

In this section, the data density of the past and present in situ (ship and buoy) 

network is evaluated to determine where more buoys are needed to meet a desired SST 

accuracy. On climate scales, Needler et al. (1999) suggested a SST accuracy of 0.2-0.5oC 

for satellite bias correction on a 500 km grid and on a weekly time scale. This suggestion 

was endorsed by the World Meteorological Organization (WMO, 

http://www.wmo.ch/web/gcos/gcoshome.html). Because satellite biases do not change 

greatly from weekly to monthly periods and because a 5o latitude-longitude box is close 

to 500 km box (only 10% larger at the equator), the minimal bias accuracy used here is 

0.5oC on a monthly 5o grid. This modification is for the convenience of computation and 

to simplify buoy deployment plans.  
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According to Figs. 6a and 6b, to reduce a 2°C bias to 0.5°C (the minimum desired 

accuracy mentioned above), the needed buoy grid resolution is about 7° and the needed 

buoy density is about 2 per 10° grid box. This coincides with the optimal buoy density for 

bias reduction defined in section 4. As a reminder, satellite biases of 2°C have occurred 

during extreme conditions (large volcano eruptions). However, under normal conditions, 

the magnitudes of satellite SST biases are of 0.5°C to 1°C, thus better than 0.5°C SST 

accuracy are achieved under the recommended buoy density (2 per 10° grid box). For 

example, simulations for biases with a global maximum of 1°C resulted in a residual bias 

of 0.32°C with a buoy density of 2 per 10° grid box. To achieve a better accuracy (e.g., 

0.2°C), more buoys are needed or reprocessing of the satellite data are necessary to 

reduce satellite biases. 

Observations from ships and buoys are combined according to their random noise 

levels. Because real time error information is usually not available from routine ship and 

buoy observations, the typical errors from statistical studies (section 1) are used. Because 

ship observations are noisier (estimated random error of 1.3°C) than buoy observations 

(estimated random error of 0.5°C), roughly 7 ship observations are required to have the 

same accuracy of one buoy observation (from 5.03.1
=

n
). Therefore an equivalent-buoy-

density (EBD) is defined as 

     
7

s
b

n
nEBD +=     (7) 

where nb and ns are the number of observations from buoys and ships in a 10o box, 

respectively.  
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 The EBD was defined for each month, and then was averaged seasonally for 

operational buoy deployment. An example is shown in Fig. 7 for October – December 

2003. As the focus is now on the open ocean, boxes poleward of 60°N and 60oS were not 

shown along with boxes with less than 50% ocean by area and boxes in Hudson Bay and 

the Mediterranean Sea. Color shading is used in the figure to indicate where and how 

many additional buoys are needed to reach the initial target of 2 buoys per 10°x°10 box. 

Note that this is a nowcast system. A forecast system would require reliable information 

on ocean surface currents. After more buoys are deployed, especially in the Southern 

Ocean, future improvements could include predictions of drifting-buoy tracks from 

statistical models or from dynamic models employing data assimilation. 

The number of additional buoys that would be needed to reach an initial EBD of 2 

for all shaded boxes in Fig. 7 has been computed and is plotted in Fig. 8 for four 

latitudinal bands. The number of buoys needed in the middle latitude Southern 

Hemisphere (60°S-20°S) shows a rapid drop with time in the mid 1990s due to the 

increase in the number of buoys deployed then (Reynolds et al. 2002). For the three-

month average shown in Fig. 7, 189 additional buoys are needed between 60°N-60°S, of 

which 102 are needed between 60°S-20°S, 65 between 20°S-20°N, and 22 between 

20°N-60°N. 

 Using the results shown in Figs. 6b and 7, it is possible to obtain the performance 

of the in situ observational system for SST. This is done using the PSBE as a function of 

BD10 as shown in Fig 6b (the solid line), where BD10 is defined by monthly values of 

EBD, similar to the seasonal values shown in Fig. 7. The individual PSBE values can 

then be averaged spatially. Fig. 9 shows the PSBE for four zonal bands from January 
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1990 to December 2003. Again the impact of additional drifting buoys in the mid 1990s 

shows a drop in the bias error with time, especially in the middle latitude Southern 

Hemisphere Ocean (20°S-60°S). In the middle latitude Northern Hemisphere Ocean 

(60°N -20°N), the EBD from the current in situ network is typically dense enough to 

correct potential satellite SST biases to an initial accuracy of 0.5oC. The global (60oS-

60oN) and tropical (20oS-20oN) averages of the potential satellite bias error are roughly 

0.6oC at the end of 2003.  

 

6. Summary and discussions 

The results presented here provide an objective method to determine the 

minimum in situ network required for SST analyses for climate in the satellite era. For 

this network it has been assumed that satellite data are available and that these data 

provide adequate coverage of the ocean on 5o spatial and monthly time scales. The 

purpose of the in situ network is to allow large satellite biases to be corrected to a 

required accuracy. Because satellite biases cannot be predicted, satellite biases in the 

NOAA/U.S. Navy operational AVHRR SST over the last 20 years were examined to 

determine bias magnitudes and typical spatial patterns. A worse case scenario was 

defined to have a global maximum bias of 2oC. The required in situ network is to reduce 

biases of this magnitude to below 0.5oC, an initial target accuracy.  

Through simulations it was found that the residual potential satellite bias error 

(PSBE) and in situ data density have a near exponential relationship. Thus once certainty 

accuracy is achieved, considerably more in situ data are needed to achieve even a small 
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improvement in accuracy. Fig. 6b shows that a buoy density of more than 3 in a 10° box 

does not reduce the bias error significantly for the biases presented here.  

The simulations also showed that at least two buoys or buoy equivalents are 

needed in 10o boxes to reduce a 2oC satellite bias to below 0.5oC. The required buoy 

density of 2 is near the end of the rapid error reduction range, thus it may be considered 

as an optimal buoy density. It is important to point out that under normal conditions (e.g., 

without a major volcanic eruption or a satellite equipment failure), the magnitudes of 

satellite biases are of 0.5oC to 1oC, and the residual bias error can be reduced to about 

0.3oC with the buoy density of 2 per 10o box. 

An equivalent buoy density (EBD) has been defined to combine ship and buoy 

observations according to their typical observational random errors. Once this is done, the 

spatial maps of the EBD were computed to determine where additional buoys would be 

needed to bring the EBD to 2 as an initial requirement.  The simulations also allowed a 

PSBE to be defined as a function of EBD. This relationship allows an average PSBE to 

be computed with time to monitor the accuracy of the current in situ network for SST.   

The EBD assumes typical ship observational random error. Recent work by Kent 

and Taylor (2004) and Kent and Challenor (2004) have begun to identify better ship SST 

observations. Once this work is completed, the better ship observations could be 

separated from the rest ship observations and then a new version of (7) could be 

developed to redefine the EBD. 

 The past in situ observation network was not specifically designed for climate 

SST and thus it was not necessarily the most efficient network for climate SST in the 

satellite era. For example, the EBDs exceeded 5 in most of the North Atlantic Ocean (see 
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Fig. 7), while the EBDs are less than 2 in a large number of boxes in the Southern 

Oceans. For climate SST purposes alone, a new in situ data distribution should be 

achieved.  

These results have already had an influence on future buoy deployments. The 

NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) is now using 

seasonal figures like Fig. 7 to guide surface drifting buoy deployments. The presently 

designed buoy need network is a nowcast system. It will require reliable information on 

the global ocean surface circulation to make it a forecast system. It is hoped that this 

study is a step toward objectively defining requirements for an integrated global ocean 

observing system. Although this study is specific for SST, the methodology presented 

here can be adopted for other parameters that are measured from both in situ and satellite 

networks. Such parameters may include sea-surface wind, sea-level pressure, sea-surface 

current, and in the future sea-surface salinity. The integrated observing system should 

also consider an integrated sensor system for multiple parameters. Future improvements 

of the work presented here could include farther study of the bias patterns associated with 

other satellite SSTs (TMI, ATSR, AMSR-E and MODIS) and reprocessed satellite SST, 

such as the most recent version of the Pathfinder AVHRR SST. 
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FIGURE CAPTIONS: 

Fig. 1. Mean (upper panel) and standard deviation (lower panel) of the satellite AVHRR 

SST biases (in °C) for January 1990 through December 2002. The bias is defined as the 

difference between the OI SST without bias correction minus the OI SST with bias 

correction. Contour intervals are 0.2°C. Positive values increase towards coastlines in (a).  

Fig. 2. EOF Modes 1 to 6 (top to bottom panels, respectively) of the AVHRR SST biases 

for January 1990 through December 2002. Spatial patterns are on the left. Time series are 

on the right with x-axis labeling the years. Multiplying the spatial pattern by the 

corresponding time amplitude results in bias in °C. The time series indicate that mode 1 

represents biases associated with volcano aerosols. Mode 2 and 3 represents two different 

seasonal variations. Mode 4 represents a trend.  Modes 5 and 6 represent interannual 

variations. 

Fig. 3. Percent variance of the 1990-2002 AVHRR SST bias EOF modes. Only the first 

25 modes are shown. The buoy need network is designed using the first six EOF modes, 

which account for 52.7% of the total variance (shaded). 

Fig. 4. (a) Absolute values of EOF mode 1 (scaled for a maximum of 2°C).  (b) Potential 

Satellite Bias Error (PSBE) for EOF mode 1 with a buoy grid resolution of 20o. By 

defintion the buoy density is one per 20ox20o grid box. The PSBE is the remaining bias 

that cannot be removed with the specified buoy grid resolution. (c) Same as (b) but for 

buoy grid resolution of  7o. Note different grey color scales are used in (a) than (b) and 

(c) for clarity. 
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Fig. 5. Adjusted Potential Satellite Bias Error (PSBE) as a function of buoy grid 

resolution for each bias regime represented by each of the first six EOF spatial patterns. 

As designed in the simulations, each of the scaled EOF modes represents a typical bias 

regime that could occur independently of each other. Thus each one has been scaled to 

have a global maximum of 2°C to represent a total bias magnitude. The buoy need 

network is designed to correct any of the biases to a required accuracy of 0.5°C or better. 

The results show that a buoy grid resolution of 7° or smaller is required. Modes 1 to 3 are 

easier to correct due to their larger spatial scales. Requirements for the regimes of modes 

4 to 6 are more stringent and similar. 

Fig. 6. Average of the Potential Satellite Bias Error (PSBE) for modes 4-6 of Fig. 5.  (a) 

(left) shows the averaged PSBE as a function of the buoy grid resolution as in Fig. 5; the 

dashed line is a linear fit to the data. (b) (right) shows the averaged PSBE as a function of 

the buoy density (BD) for a 10ox10o spatial grid. The dashed line is the model fit by Eq. 

(5). Note that the PSBE decreases rapidly as BD increases from 0 to 3, but the error 

reduction levels off  beyond a BD of 3. The thin vertical dash line indicates where BD=2, 

which is the recommended minimum buoy density to reduce a 2°C bias to below 0.5°C. 

Fig. 7. Seasonally (October – December 2003) averaged monthly equivalent buoy density 

(EBD) on a 10ox10o grid. EBD includes contributions from both buoys and ships, 

accounting for their typical random errors. Green shading indicates where EBD≥2 which 

satisfies the initial requirement. Red shading indicates critical regions where EBD<1 and 

two more buoys are needed. Yellow shading indicates 1≤EBD<2 and at least one more 

buoy is needed.  
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Fig. 8. Number of additional buoys would have been needed to bring the equivalent buoy 

density (EBD, Fig. 7) to 2 or more per 10° box for four zonal bands. The effect of large 

buoy deployment in the mid 1990s is indicated by a drop in the number of buoys needed. 

Fig. 9. Simulated potential satellite bias errors (PSBEs). Shown are zonal averages over 

four latitude bands. The simulated PSBEs are for simulated biases with a global 

maximum of 2°C. The PSBE is the residual bias error that cannot be removed by the 

existing in situ observing network. Because the actual biases are often smaller than 2°C, 

the residual bias errors may be smaller than those shown.  
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