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ABSTRACT

An improved SST reconstruction for the 1854-1997 period is developed.  Compared to

the version 1 analysis, in the western tropical Pacific, the tropical Atlantic and Indian oceans,

more variance is resolved in the new analysis.  This improved analysis also uses sea-ice

concentrations to improve the high-latitude SST analysis, and a modified historical bias

correction for the 1939-1941 period.  In addition, the new analysis includes an improved error

estimate.  Analysis uncertainty is largest in the 19th century and during the two world wars, due

to sparse sampling.  The near-global average SST in the new analysis is consistent with the

version 1 reconstruction.  The 95% confidence uncertainty for the near-global average is 0.4°C

or more in the 19th century, near 0.2°C for the first half of the 20th century, and 0.1°C or less after

1950.
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1. Introduction

Sea surface temperatures (SST) are important to the study of the earth's climate.  For this

purpose it is important that the SST analyses be global and as consistent as possible for the

historic record.  This is difficult because of changes in the observing system.  As discussed in

many sources (e.g., Smith, et al. 1994) the historic distribution of in situ SST data from ships has

varied with time due to a variety of economic and political changes (the opening of new canals,

world wars, improved communication, etc.).  In addition, biases in the ship in situ data have

occurred as observational techniques have changed, and those biases must be corrected, as

discussed in Folland and Parker (1995) and Smith and Reynolds (2002).  Beginning in the 1970s,

SST in situ data began to be available from drifting and moored buoys.  Initially the number of

observations from buoys was small, although the present number is comparable to the number of

ship observations.  Infrared (IR) satellite SST retrievals became available in November 1981, as

discussed by Reynolds et al. (2002, henceforth REA), and are now supplemented with  satellite

SST microwave retrievals.  The coverage from satellite data greatly improves SST coverage and

now overwhelms the in situ data.  This is an improvement for climate SSTs but may also be a

problem when biases occur as discussed by Reynolds (1993) and by Reynolds et al. (2003).

Smith and Reynolds (2003) introduced the Extended Reconstruction SST analysis

(ERSST), a global SST analysis that attempts to be consistent over time, here referred to as

ERSST version 1 (ERSST.v1).  This was done by using the REA analysis from the period with

satellite data to develop global spatial correlation scales defined by a set of spatial modes. 

However, the ERSST.v1 analysis is always computed by a fit to in situ data, even in the period

with satellite data.  The UK Met Office computed their own analysis (Rayner et al. 2003)  using
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a similar technique but using all available data, both in situ and satellite.  Both of these analyses

and others (e.g., Smith et al. 1996, REA) were used for intercomparisons.  The results showed

several shortcomings in the ERSST.v1 analysis.  The purpose of this paper is to correct these

shortcomings with an improved version of the analysis, ERSST version 2 (ERSST.v2).  In the

sections which follow we first briefly review the methods used to develop  ERSST.v1 so that this

paper can be more easily understood.  We then discuss the problems in ERSST.v1.  In the

following sections, we develop the modifications used to create ERSST.v2 and show

intercomparisons of ERSST.v2 and some of the other analyses mentioned above.

2. ERSST.v1

The ERSST.v1 analysis is produced from the latest version of the Comprehensive Ocean

Atmosphere Data Set (COADS, Slutz et al. 1985, Woodruff et al. 1998).  This version is called

COADS release 2.0, and it is used for both ERSST.v1 and ERSST.v2.  The analysis uses

monthly and 2° spatial super observations, which are defined as individual observations

averaged onto our 2° grid.  The super observations are produced after data screening, or quality

control (QC), which is needed to eliminate outliers.  The super observations are also corrected

for historical biases before 1942 by the method described in Smith and Reynolds (2002).  

The combined satellite and in situ analysis of REA is used to develop spatially-complete

statistics for our reconstruction.  We averaged the monthly 1982-2000 REA analysis to the same

2° grid that we use for the COADS data.  In addition, we computed a SST climatology for the

same period.

The ERSST.v1 analysis is performed separately for the low- and high-frequency
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components, which are then added together to form the total SST anomaly.  The low- and high-

frequency components are separated because the stationary statistics used for the high-frequency

analysis are based on only nineteen years of SST anomalies, and thus may not adequately span

interdecadal variations.  The low-frequency analysis is computed by smoothing and filtering our

QC'd super observation anomalies over 10° spatial regions using 15 years of data, to generate

one low-frequency analysis per year.  This low-frequency anomaly is removed from the

observed SST super observations before the high-frequency analysis is computed.

The analysis of high-frequency anomalies uses our 2° version of the 1982-2000 REA

analysis to define a set of anomaly-increment modes, or spatial patterns. Increments are defined

as the difference between the present analysis or super observation and the previous month’s

analysis.  The modes are computed using the method of empirical orthogonal teleconnections

(EOTs, van den Dool et al. 2000), which are similar to empirical orthogonal functions.  The

EOTs used here are localized so that teleconnections of more than 5000 km are damped, and

those of more than 8000 km are set to zero.  Localization prevents the analysis of anomalies that

are not locally supported by the observations.  An objective method is used to select the set of

EOT modes that are adequately sampled by the super observations.  For the selected modes, a

weight for each mode is found by fitting the set of modes to the super observations.  Variance

associated with the unselected modes is damped.  The super observations used to compute the set

of weights have been adjusted in two ways.  First the low-frequency analysis has been subtracted

from the observations.  Second, the observations have been converted to data-increments.  The

high-frequency component of ERSST.v1 is then computed from the weighted sum of the EOT

modes.  The complete analysis is the high-frequency analysis plus the low-frequency analysis.
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For the satellite period the standard deviation of ERSST.v1 (FEv1) is similar to that of the

NOAA OI data (FNOI) of REA in most regions.  However, there are some regions where FEv1 is

weaker than FNOI.  These include the western tropical Pacific and Atlantic and the tropical Indian

(Fig. 1).  For comparison, the standard deviation from an in situ only OI analysis (FIOI) is also

shown.  The in situ OI analysis is produced using methods similar to the REA NOAA OI

analysis, except that only in situ SST data are used and monthly anomalies are analyzed directly

on the 2° grid.  The 1982-1997 period is fairly well sampled, and all three have similar standard

deviation in the Northern Hemisphere, where sampling is best.  Both of FNOI and FIOI are

comparable in the tropics, but FEv1 is weaker than the other two in the western tropical Pacific,

Atlantic, and in the Indian.  Those regions have low variations in all three, but FEv1 is weakest,

which may affect the monitoring or modeling some climate variations.

As discussed in the following section, the ERSST.v2 analysis method will be devised to

correct the low tropical variance.  In addition, other improvements will be added.  The first is to

add sea-ice information to the analysis.  This will improve the analysis at high latitudes where

other in situ data are sparse.  The second is an adjustment of the historical SST bias correction

for the 1939-1941 period, which affects results most strongly in 1941.  The third is to add

improved error statistics as well as a spatial gridded field of the monthly error.  This will provide

an objective way to determine how the analysis accuracy changes with time and space.

3. ERSST.v2

We now discuss the changes that have been made in the ERSST.v2 analysis: improved
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high-frequency analysis, use of a sea ice to SST conversion algorithm, adjustment of the bias

correction, and improved error analysis.

3a. Improved high-frequency analysis

In many ways ERSST.v2 is nearly identical to ERSST.v1.  They both separate the

analysis into low- and high-frequency components, which are summed for the total analysis. 

Both use the same COADS SST anomaly super observations and the same low-frequency

anomaly analysis.  The difference between the two versions is the high-frequency analysis.

In ERSST.v1 anomaly increments were analyzed using anomaly-increment modes. 

There are some advantages to analyzing increments with increment modes.  Increments are

designed to include temporal information, and fewer increment modes may be needed provided

that they can be accurately defined (Thiébaux 1997).  However, month-to-month anomaly

increments generally have a much weaker signal than the anomalies themselves.  In addition, the

modes used for analysis are computed from anomalies containing some random error, and the

difference of two such anomalies can have twice the random error.  Thus, the anomaly

increments used for computing modes will tend to have a lower signal/noise ratio than the

anomalies alone.  In regions where the anomaly changes slowly this can make it difficult to

accurately compute increment modes.  This explains why ERSST.v1 had difficulty analyzing the

western-tropical Pacific, where month-to-month variations tend to be small.

To overcome problems associated with increments, ERSST.v2 analyzes anomalies using

anomaly modes.  As with ERSST.v1, a satellite-based SST analysis is used to compute a set of

M spatial modes, except that ERSST.v2 is based on anomalies.  The high-frequency anomaly for
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ERSST.v2 is then estimated using
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Here Em(x) is the mode, m, at each spatial area x, and the analysis weight for time t and mode m

is wm(t).

For each time step the high-frequency anomaly is analyzed by screening out modes not

adequately sampled, with screening done as in ERSST.v1.  Screening rejects modes that have

less than a critical percent of their variance sampled.  For the selected modes we find the set of

weights that minimize the squared error of the fit, compared to the available data, as in the

ERSST.v1 analysis.  The maximum number of anomaly modes used for analysis, 130, is larger

than the maximum number of increment modes in ERSST.v1, which is 75 modes.  More

anomaly modes are used to ensure that we better resolve tropical variations.  Note that 130 is the

maximum number of modes used.  Under sampled modes are screened out, with sampling

checked at each time step.  The method for determining if a mode is adequately sampled is

discussed below and in Smith and Reynolds (2003, hereafter referred to as SR).

When a mode is under sampled its ERSST.v2 weight is not defined by fitting to the data. 

In those cases the weight is estimated using the autocorrelation for that mode, similar to

ERSST.v1.  The autocorrelations are estimated from the 1950-1997 period, when weights for all

modes can be computed most of the time.  For each mode, the undefined weights are estimated

using the nearest defined weights in both the forward and backward directions and the
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autocorrelation of the mode.  If the time lags to the nearest defined weights in the forward and

backward directions are lp and lm, and the lag-1 autocorrelation for the mode is rm, then the

damped estimate for the undefined weight is set to we(t) = 0.5 (w(t+lp) rm
lp + w(t-lm)rm

lm).  For

months far from any defined weights, the estimate will damp to near zero.  Undefined weights

that are close to defined weights will be more continuous.

In addition to the autocorrelation damping described above, a way to include temporal

information is to pool anomalies from several months about the analysis month.  Here we test the

analysis two ways: using only anomalies from the analysis month and using pooled anomalies

from three months centered on the analysis month.  For the pooled anomalies, where the

anomaly is defined for the analysis month we use that value.  Where the anomaly is not defined

for the analysis month but is defined in one or both of the adjacent months, the anomalies from

the adjacent months are used, averaging them if both are defined.  As discussed below, both

methods give similar results, but the pooled data gives slightly stronger analyses when sampling

is most sparse.

Besides the quality control described by SR, the 2° monthly anomalies used for the

ERSST.v2 high-frequency analysis are further screened.  This was found to be necessary by first

performing the analysis without the second screening.  In that analysis, there were a few times

and locations where the analyzed anomalies were much larger than other anomalies at that

location.  These anomalies were apparently due to biased data.  For example, in the NINO 4 area

(5°S-5°N, 160°E-150°W), the range of anomalies is nearly always between -1.5°C and 1.5°C. 

However, without the second screening, there is a time in the late 1910s when the NINO 4

average is less than -3°C.  In that period sampling is sparse and the unusually large anomaly
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appears to be caused by a few biased data that passed the initial quality control.  There must be

several observations with a similar bias or else the first screening would have removed them,

while random errors are filtered out by fitting to modes.  This was not a problem in ERSST.v1,

which used fewer modes which had larger spatial scales than some of the modes used in

ERSST.v2.

The additional screening removes super-observations with a high-frequency anomaly

magnitude of greater than kFNOI, where k a positive number.  We also retain all super

observations with anomaly magnitudes of 1.0°C or less to avoid excessive screening where the

variance is weak.  To assign k, screening with k = 4 , 4.5, and 5 was tested and the change to the

analysis was evaluated.  For k = 4, the resulting ERSST.v2 analysis still contained occasional

outliers like the NINO 4 outliers discussed above.  For both k = 4.5 and 5, the NINO 4 example

was cleaned up without damping the analysis, and there were few other large-magnitude

anomalies in the analysis.  We used the less restrictive k = 4.5 value.

Most anomalies removed by the additional screening are at high latitudes, where SST

gradients are strong and small errors in latitude can produce large anomaly errors.  In low

latitudes relatively few are removed except for before 1880, around 1915, and around 1940. 

Analysis sampling is determined by how many modes are selected with the available sampling. 

The second screening usually only reduces the number of modes selected by one or two (out of

the 70 or more modes typically selected).  Therefore, the second screening does not greatly

affect sampling error in the analysis.  Note that the low-frequency analysis is exactly the same as

was used in ERSST.v1, and does not use the second screening.  Additional screening is not

needed for the low-frequency analysis, since that analysis filters out the effects of the outliers.
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The ERSST.v2 analysis was tuned to determine: 1) the critical sampling level needed to

accept a mode in the analysis; and 2) whether to use 1 month of data or data pooled from 3

months.  In ERSST.v1 SR used cross validation tests to determine that at least 15% of the

variance of each mode should be sampled for the mode to be used in the analysis.  Here we

tested ERSST.v2 using 3-months of pooled data and critical values of 15%, 25%, and 35% of the

variance sampled for each mode.

The variance from 15-year running periods for each test is computed, and averaged over

the 60°S-60°N region.  The square root of the ratio of that variance, to the average 1982-1997

NOAA OI variance, gives the relative strength of the analyses, here called the relative standard

deviation.  For all three critical values, the variance is similar after 1950, when sampling is

relatively dense.  Compared to the recent period, the 15% critical value gives high variability

before 1950, when sampling is sparse (Fig. 2).  The relative standard deviation is as much as

25% stronger than in the recent period, indicating that some poorly sampled modes may be fit in

that period.  For a 35% critical-sampling value, variability is lower before 1950, compared to the

recent period.  With a 25% critical-sampling value the relative standard deviation is nearly

constant except before 1880, when it decreases due to sparse sampling.  In addition, the relative

standard deviation from ERSST.v1 is nearly the same as for the 25% critical sampling in

ERSST.v2.  Therefore, we use a 25% critical-sampling value for ERSST.v2.

The 1982-1997 standard deviation map for the ERSST.v2 using 3-month pooled data

(Fig. 3) compares well to the NOAA OI standard deviation for the same period.  It is an

improvement over ERSST.v1, which has more damped tropical standard deviation.  For the 1-

month analysis the standard deviation in this period is nearly identical to the 3-month pooled
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analysis.  For both, nearly all modes are chosen in this recent period, but in earlier periods many

more modes are lost in the 1-month analysis compared to the 3-month analysis.  In the first half

of the 20th century, using 3-month pooled data increases the number of selected modes by more

than 20%.  The increase is even greater in the 19th century.  In addition, the spatial standard

deviation for the 60°S-60°N region for ERSST.v1 and for the 3-month analysis are comparable

(see Murphy and Epstein 1989 for a definition of spatial variance).  However, for the 1-month

analysis the spatial standard deviation is lower before about 1910.  For these reasons we use the

3-month pooled data analysis for ERSST.v2.

3b. Merging of sea-ice information

As noted above, the REA analysis incorporates estimates of sea-ice concentrations into

its high-latitude SST analysis.  An algorithm that converts sea-ice concentrations to SSTs was

developed by Rayner et al. (2003) for an extended historical SST analysis (HadISST).  The

HadISST analysis is based on in situ, and when available satellite based observations.  Although

different from COADS, for most of the analysis period that data are comparable to COADS. 

With the Rayner et al. (2003) method the SST is forced to the freezing temperature of sea water,

Tf, as the ice concentration approaches 0.9 (i.e. 90% ice cover).  The freezing point of sea water

is here set to !1.8°C, except in the Great Lakes where it is set to 0°C.  A relationship between

co-located SST and sea-ice concentration is derived by a quadratic adjustment.  The adjustment

is defined as

(3)cbIaITQ ++= 2

where I is the ice concentration and a, b, and c are empirically-derived coefficients, derived with
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the constraint that TQ(I=0.9) = Tf .  Those coefficients are defined using the available data from

the marginal ice zone (MIZ).  In situ data in the MIZ are sparse, so both in situ and AVHRR

satellite-based SSTs are used to derive the coefficients for a recent period.  In the Arctic,

coefficients are computed as a function of both month and longitude, with separate coefficients

for several Northern Hemisphere regions (the Great Lakes, Baltic Sea, Sea of Okhotsk, Sea of

Japan, and Gulf of Alaska).  In the Antarctic the coefficients are computed only as a function of

month because of limited data.

In Rayner et al. (2003), adjusted temperatures with concentrations less than 0.15 were

smoothed into the no-ice analysis using Poisson blending.  In our ice blending we test the

quadratic adjustments, computing them the same way except that we simplify the ice-edge

smoothing of TQ so that the adjustment linearly merges with the no-ice analysis as I goes from

0.2 to 0.

Quadratic adjustments gives reasonable results, but there are potential problems because

of reliance on region and month dependent empirical coefficients, which were computed to fit

the available data in a fixed base period.  If conditions change significantly over the analysis

period from the base conditions, the method may not fully represent those changes.  In addition,

some of the coefficient fits were computed using satellite SST retrievals which have been shown

to be biased, because of difficulty in distinguishing ice from open water (Rayner 2003, personal

communication).  Therefore, we developed a simplified adjustment method, which we here

examine along with the quadratic method.

To test the sea ice to SST conversion algorithms, we use the sea-ice concentrations of

Rayner et al. (2003).  Those concentrations include Arctic summer concentrations from
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microwave sea ice retrievals, which tend to underestimate summer concentrations due to the

formation of melt ponds on the ice.  Those satellite retrievals are combined with other

observations, values taken from atlases, and climatology when there are insufficient data.  The

methods tested all set the analysis SST to the freezing point of sea water for ice concentrations of

more than 0.9.

We test a piece-wise linear adjustment defined as

(4)
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where A is the pivot point where the two pieces join, and is set between 0 and 0.9.  The

unadjusted analysis temperature is To.  For A = 0, this gives a linear adjustment with no pivot. 

For A = 0.9 there is only an adjustment at I = 0.9.  This gives a linear adjustment from To to Tf, as

the concentration I ranges between A and 0.9.  In practice the piece-wise linear method is similar

to the quadratic method, which gives slowly changing temperatures at low concentrations and

more rapid changes at high concentrations.  However, the piece-wise linear adjustments require

only one (monthly and regionally constant) parameter, compared to two monthly and spatially

dependent parameters used for the quadratic adjustment.

To evaluate the different methods, we bin SST values from the unanalyzed COADS 2°

super observations, along with the ERSST.v2 analysis adjusted using several sea ice to SST

algorithms.  For different ice-concentration intervals (i.e., intervals of I) the average SST from

the algorithms is computed and compared to the COADS super observations, at locations where

COADS observations are available averaged over time and spatially.  Values are binned within
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ice-concentration intervals of 0.1.  Here we discuss comparisons for the 1980-1989 period over

regions poleward of 60° latitude.  Comparisons for other decades and also some regional

comparisons showed similar results.

Table 1 gives the root-mean-squared difference (RMSD) of adjusted SST from COADS

super observations, comparing concentrations between 0.1 and 0.8.  The RMSD is weighted by

the number of comparisons in each ice-concentration interval.  For the 60°N-90°N region in

summer, winter, and all months, the piece-wise linear RMSD decreases with increasing A,  from

A = 0 (referred to as PL0)  A = 0.9 (referred to as PL9).  As discussed below, we believe that the

high-concentration COADS values are questionable, which makes the lower RMSD values for

PL9 questionable.  The quadratic adjustment gives similar RMSD values to PL6, but PL0 is

clearly inferior to the quadratic adjustment.  From comparison in the 60°S-90°S region, a similar

conclusion can be drawn.

In the warm seasons for both hemispheres, the COADS super observations tend to not

decrease very much with increasing concentration (Fig. 4).  This may be due to more noise at

high concentrations because there are fewer temperature observations with high concentrations

(shown on the lower half of the panels), or due to bad match ups between the ice-concentration

data and COADS from errors in either data set, or due to SST biases in high-concentration

observations.  Physically, the SST must approach Tf as I approaches 0.9, so the high-

temperatures with high sea-ice concentrations are questionable.

The quadratic-adjusted SST and the piece-wise linear adjusted SST with A = 0.6 (PL6)

give similar variations of temperature with ice concentration.  Based on these comparisons, we

use the PL6 adjustment for ERSST.v2.  The same adjustment is also applied to the in situ OI



14

comparison analysis.  The entire 1854-1997 period is adjusted using the sea-ice concentrations of

Rayner et al. (2003).

3c. Bias-correction adjustment

Corrections of SST for historical biases are needed before 1941 due to differences in

measurement practices before and after that year (Folland and Parker 1995).  Before World War

II most SST measurements were computed from water samples taken on deck in buckets.  After

the war, ship-engine intake measurements were more common.  Folland and Parker (1995)

suggest a set of bias corrections to account for the different measurement practices.  Those

corrections abruptly end after 1941, and there are no suggested corrections for after that year. 

Following Folland and Parker (1995), Smith and Reynolds (2002) developed a set of bias

corrections using different methods.  Due to sparse data during World War II, they were not able

to resolve that period well enough to justify a more gradual end to the corrections.  Thus, they

also end their corrections abruptly after 1941.  Those Smith and Reynolds (2002) corrections

were used in ERSST.v1.

Around 1940, COADS release 1 was dominated by Japanese data (see Fig. 3 of Woodruff

et al. 1998), but new (primarily US) data altered the release 2.0 COADS data used for ERSST. 

Over much of the oceans, the 1941 ERSST.v1 anomalies are noticeably warmer that the

HadISST anomalies for that year.  An analysis by Folland (2003, personal communication)

indicates that COADS release 2 SST has a positive bias relative to the data originally considered

by Folland and Parker (1995).  This bias begins in 1939 and gradually increases until 1941,

ending after 1941.
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Folland (2003) found that most differences between COADS and the data previously

considered by Folland and Parker (1995) disappear if the bias correction is reduced to zero

linearly over the 1939-1941 period, rather than as a step after the end of 1941.  Therefore, for

that period we weight of the Smith and Reynolds (2002) bias correction by 1-m/36, where m = 1

for January 1939 to m = 36 for December 1941.  That adjusted bias correction is used for

ERSST.v2.  In the future, more careful evaluation of biases in this period is planned.

3d. Error analysis

Analysis errors can be separated into three types of error: random error, sampling error,

and bias error.  These three components are independent, as discussed by Kagan (1979).  Thus

the total analysis error variance may be written as their sum

(5)2222
BSR εεεε ++=

where the subscripts R, S, and B represent random, sampling, and bias error variances,

respectively.  Random error variance in an analysis, gR
2, is from random errors in the input data

which are analyzed.  Since those errors are random they can be mostly averaged or filtered out of

an analysis that incorporates enough data.  Sampling error variance, gS
2, reflects the

representativeness of the available grid of sampling and how that sampling changes in time.  If

correlation scales are very large then few data may be used to represent a region.  With smaller

correlation scales more data distributed over the region are needed.  While the random error for a

region can be reduced with more data at the same place, reducing sampling error requires that

additional data be spread over the region.  Bias error variance, gB
2, is due to systematic biases in

the data or due to the analysis method.  The pre-1942 SST data are corrected for known
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systematic biases with respect to the later data (Folland and Parker 1995, Smith and Reynolds

2002).  However, these bias corrections are not perfect.  In addition, there can be systematic

uncertainties in the data other than those corrected, since COADS is formed by merging different

data sets from the ships of different nations, which used different sampling methods.

The ERSST.v2 analysis removes almost all random error.  As discussed above and in SR,

the low-frequency component of the analysis averages and filters a large number of data.  The

low frequency analysis requires a minimum of over 100 observations, and in addition there is

spatial and temporal binomial smoothing as part of that analysis.  So random error variance in

the low-frequency analysis is reduced a factor of more than 100 compared to the random noise of

individual observations.  The individual observations are themselves quality controlled, so the

low-frequency random error variance is very small.  

The high-frequency component of the analysis is computed by fitting data to a set of

spatial modes representing the covariance from a well-sampled period.  Random errors should

not project onto these modes, and therefore they should be filtered out of the high-frequency

analysis.  For ERSST.v1, SR computed the signal/noise variance ratio for several 30-year

periods in the 19th and 20th century, and gave the 60°S-60°N spatial average of the ratio for each

period.  In ERSST.v1 the ratio was found to be about 30 for all periods.  The noise error variance

is here represented by gR
2, and this implies that the signal overwhelms that component of the

error in ERSST.v1.  In ERSST.v2 the ratios were similarly computed, and found to be between

32 and 34.  This indicates that there may be some residual random error variance in ERSST.v2,

but it is only about 3% of the analysis variance, FTa
2.  This is for the analysis with 2° spatial and

monthly resolution.  For spatially or temporally averages of the analysis, the noise error variance
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is further reduced by dividing it by the number of 2° monthly regions averaged.

To better describe the error, let T be the true SST anomaly and Ta be the analysis SST

anomaly.  Then by definition, the total error variance is

, (6)( ) ( )2,
222 2 aTaTTaTTaTa TTrTT −+−+=− σσσσ

where the brackets denote averaging.  The first three terms on the right-hand side of (6) involve

the variance of the true and analysis SST anomalies and the correlation between them, rT,Ta. 

Those three terms represent sampling and random error variance.  The last term, (<T> - <Ta>)2,

is the bias error variance.

For analysis of the error it is useful to write the analysis SST anomaly, Ta, in terms of the

true anomaly, T, as

(7)RTTa ++= βα

where " and $ are constants, and R is the random noise.  Random noise includes all of the

uncorrelated differences, which can not be accounted for by "T + $.  Note that " determines the

relative strength of the analysis, and the sampling error, gS
2, is reflected by ".  The systematic

bias is represented by $.  Since R is random, its mean is zero and it is uncorrelated with anything

else, and its variance is gR
2.  Using this equation (7) we can define 

,2222
RTTa εσασ +=

where FT
2 is the variance of the actual anomaly and "2FT

2 is the analyzed signal variance.  Using

these definitions, the correlation between the true SST anomaly and the analysis can be

expressed as
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As discussed above, the ERSST.v2 signal/noise variance ratio is very large, so "2FT
2 o

gR
2, and rT,Ta . 1.  Thus, for ERSST.v2  gS

2 + gR
2 . gS

2 and we can simplify equation (6) to

.( ) ( ) ( )222
aTaTa TTTT −+−≈− σσ

The ERSST.v2 sampling error is caused by incomplete analysis of the true variations, due

to analysis filtering or incomplete data.  Even when there are enough data for all modes to be

sampled, there may be variations not spanned by the set of modes.  Thus, there may always be

some residual sampling error.  In addition, the true SST anomaly variance is not stationary over

the analysis period, largely because of interdecadal variations.  Because changes in the true SST

anomaly variance are difficult to detect, we first estimate FT - FTa for the high frequency.  This

gives the expression

( )22 )( hfTaThfS σσε −=

to compute only the high-frequency (hf) sampling error.  As with the analysis, we separately

compute the low-frequency sampling error, and add the independent components for the total

sampling error.

The NOAA OI from 1982-1997 is used to estimate the true high-frequency SST anomaly

variance, (FNOI
2)hf . (FT

2)hf, and we assume that it is stationary.  Although the NOAA OI analysis
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contains some noise due to its use of different data types and bias corrections for satellite data, it

is dominated by satellite data and gives a good estimate of the truth.  Since we use this for

estimating the high-frequency error, we remove the linear trend from the NOAA OI data before

computing the variance to minimize its interdecadal variations.  Similarly, for the analysis we

remove the linear trend for running 15-year periods centered on the time of interest, and compute

the analysis high-frequency variance in that period to estimate the high-frequency sampling

error.  Because of the possibility of seasonality in the sampling error, we use only data from the

appropriate season for seasonal or monthly estimates.

The low-frequency sampling error is computed by estimating how well the available

sampling can estimate a linear trend.  A trend of 0.5°C/100 years is assigned everywhere on the

globe.  That is approximately the magnitude of the trend of global-average temperature over the

20th century.  For each year the low-frequency sampling error is estimated by sampling that

constant trend using the observed sampling for the year, with sampling held constant over 100

simulated trend years.  The mean-squared difference between the actual trend and that sub-

sampled low-frequency analysis of the trend defines the low-frequency sampling error variance

for the given year.  Repeating the process using the sampling of other years gives the low-

frequency sampling error for those years.  Note that this estimate of the low-frequency sampling

error is similar to the estimate in SR and Smith et al. (2002), who estimated the low-frequency

sampling error using coupled GCM SST output that was sub-sampled to match historical

sampling.

The bias error variance, gB
2, is estimated similar to in SR, using the mean-squared-

difference between the Folland and Parker (1995) bias correction and the adjusted Smith and
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Reynolds (2002) bias correction.  This difference is assumed to represent uncertainty in the bias

correction.  Both bias corrections are zero after 1941.  Since there may be some residual bias

after 1941, we reduce the difference linearly from its 1941 value to zero at 1945.  In addition, to

account for the 1939-1941 adjustment, we increase the difference in that period by a factor

proportional to the magnitude of the adjustment.  With maximum adjustment the factor is 2 in

December 1941.  The mean-squared difference is computed over the time period used to

compute FTa
2.  A minimum gB value of 0.015°C is assigned whenever the measured value falls

below the minimum, as discussed by SR.

The three error components, for annual and 60°S-60°N averages (Fig. 5), show that most

of the error of the average is from the low-frequency analysis.  Because of its damping when

data are sparse, the low-frequency analysis may underestimate interdecadal variations.  Problems

are greatest before 1900 and in periods associated with the two world wars.  The bias error can

also be large prior to 1940, but it is generally less than the low-frequency error.  The high-

frequency error is usually the smallest, although it is occasionally larger than the bias error.  Our

bias error is similar in size to the estimate of Folland et al. (2001).  However, because of the

large low-frequency error estimate the overall ERSST.v2 error estimate for the near-global

average is larger than their estimate.  Sampling of the low-frequency (trend) part of SST needs to

be greater than for the high-frequency part since the trend is not described by a stationary set of

basin-scale modes.  In Folland et al. (2001) a 52 year filled analysis was developed to describe

covariance associated with both the low and high frequency, allowing potentially better low-

frequency analysis.  However, that analysis assumes that the 52-year period spans all important

inter-decadal variations, while our analysis is slightly more conservative with the low-frequency



21

analysis.

4. Results

Regions where ERSST.v1 variability is too weak include the western tropical Pacific and

Atlantic (Fig. 1).  Time series of the NINO 4 area SST anomalies (Fig. 6) from both ERSST.v1

and ERSST.v2 show differences in the new analysis and differences from the HadISST analysis

of Rayner et al. (2003).  All three show similar interannual variations.  Both ERSST.v1 and

ERSST.v2 are more damped than HadISST before 1900.  The HadISST analysis more closely

follows the available observations when data are sparse, to maximize analysis signal, while the

ERSST analyses are more conservative in sparse-sampling situations in order to minimize noise. 

The ERSST.v1 anomalies are more damped than the ERSST.v2 anomalies in this west-central

tropical Pacific region, especially before 1960.

In section 3a (Fig. 2) we discussed the relative standard deviation for the 60°S-60°N

region.  Here we show the relative standard deviation for three smaller regions: 23°N-60°N,

23°S-23°N, and 60°S-23°S (Fig. 7).  In both of the extra-tropical regions the ERSST.v2 analysis

is slightly weaker than ERSST.v1.  However, in the northern extra tropics ERSST.v2 is stronger

than ERSST.v1 in the most recent period, when sampling is best.  The Northern Hemisphere

stronger variance in ERSST.v1 before 1960, when sampling is less, may be due to slightly less

filtering of noise in that analysis.  The Southern Hemisphere ERSST.v2 variance is smaller and

changes less over time than the ERSST.v1 variance.  Variance differences are larger in the

Southern Hemisphere than in the Northern Hemisphere, and differences are largest in the most

recent period, suggesting that ERSST.v1 is more sensitive to changes in sampling in that region. 
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For the tropics and Northern Hemisphere, HadISST variations are stronger after 1950.  The

HadISST analysis attempts to make maximum use of the available data, so the strength of its

variations are more sensitive to changes in sampling.

In the tropics the ERSST.v2 variance is always larger than for ERSST.v1 due to better

representation of the western tropical Pacific and Atlantic, as well as the tropical Indian.  Both

analyses have fairly constant tropical variance.  The better representation of the tropics is the

main advantage of ERSST.v2 compared to version 1.  The HadISST analysis tends to be weaker

between before 1950 and its strength increases as sampling increases later.

The RMSD between ERSST.v2 and HadISST (over the same 15-year running periods)

shows an uncertainty similar to our total standard error (Fig. 8), which includes bias and

sampling error.  Differences are largest in periods of poor sampling, especially before 1900 and

around the 1940s.  Besides poor sampling around the 1940s, that period also has a large

difference between the two SST bias corrections, which further increases the analysis

differences.  Since it is difficult to know which analysis is better, the RMSD between them could

also be used as a measure of analysis uncertainty.  The consistency of the standard error estimate

with the RMSD suggest that our error estimate is reasonable.

Maps of monthly standard sampling error indicate regions where sampling is relatively

good or bad.  The ERSST.v2 normalized standard sampling error for January of 1900 and 1940

(Fig. 9, left panels) indicate normalized error less than 0.3 over most regions for those years. 

This includes both the low- and high-frequency sampling error.  Standard errors discussed here

are normalized with the NOAA OI standard deviation for the month.  For 1900 the sampling

problems are largest in the western tropical Pacific.  For 1940 the largest sampling problems are
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in the Southern Hemisphere.  Both of these years have relatively large sampling error (Fig. 8),

and sampling errors after 1950 are much smaller.  The comparable sampling error maps for the

in situ OI (Fig. 9, right panels) clearly shows the sampling along ship tracks.  In that analysis,

only densely-sampled regions have a normalized sampling error of less than 0.3, and there are

many more regions with error above 0.9.  Contrasted to ERSST.v2, the in situ OI analysis does

not use large-scale spatial modes and therefore does not incorporate as much spatial-covariance

information.  The in situ OI also does not include as much temporal-covariance information. 

Because of its lesser use of these statistics, the in situ OI requires more dense sampling.  The

ERSST.v2 analysis requires less sampling, with the trade off that it filters the input data more

than the in situ OI analysis.

5. Conclusions

The new analysis (ERSST.v2) is an improvement over version 1 because of its stronger

variance in the western-tropical Pacific, its inclusion of ice-concentration information, and its

improved error estimates.  Averaged over large regions there is relatively little difference

between ERSST.v2 and version 1.  However, there are at times large differences between

ERSST.v2 and the HadISST analysis of Rayner et al. (2003).  Those differences generally lie

within the 95% confidence interval for the analysis.  For example, for the 60°S-60°N annual

averages (Fig. 10, upper panel) there are large differences before 1900.  In that period sampling

is sparse, as reflected by the wide confidence intervals.  The confidence interval is most narrow

after 1950, when sampling is better than in earlier periods.

Temporal correlation of monthly HadISST and ERSST.v2 anomalies is highest in the
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most recent decades and away from the Southern Oceans (Table 2).  Except for that region and

the Arctic Ocean, typical correlations are 0.7 or higher since 1940, but less than 0.6 before 1940. 

Correlations are lowest near Antarctica, as would be expected from the sparse data there.

Although HadISST is almost always within the 95% confidence intervals for ERSST.v2,

an exception occurs in the 60°S-23°S annual averages for the period after 1980 (Fig. 10, lower

panel).  HadISST incorporates different types of data, including satellite estimates of SST when

they are available, to help the analysis where data are sparse.  Biases in the satellite data may

cause the southern ocean cool bias relative to the COADS-based ERSST.v2.  For the 60°S-60°N

area the warm spike around 1940 is much more pronounced in ERSST.v2 compared to HadISST. 

That spike is due to an increase in tropical SSTs.  Historical and paleo data suggest that there

was a very warm El Niño episode at that time (e.g., Rasmusson 1984, Evans et al. 2000).  The

COADS data indicate a stronger episode than HadISST, but the errors are large in that period

due to sparse sampling.

For the 1982-1997 period, when the NOAA OI and the historical analyses overlap,

comparisons can be made to the NOAA OI analysis.  Since the NOAA OI analysis incorporates

satellite and in situ data, we consider it to be a close approximation of the truth.  The global

spatial RMSD between the NOAA OI analysis and ERSST.v1, ERSST.v2, and HadISST (Fig.

11) show that both ERSST.v1 and HadISST have comparable overall skill.  They both also show

a large annual cycle in the RMSD, with larger differences around the middle of the year (when

southern scean ship sampling is reduced).  The ERSST.v2 analysis has consistently higher skill

(lower RMSD), and also a smaller cycle in the RMSD.  The improvement in ERSST.v2 RMSD

is nearly the same at all latitudes except in the Arctic Ocean, where there is almost no difference
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between all three.

All of these historical analyses show broadly similar variations which give us confidence

in the results.  Because data are sparse over much of the historical period, methods incorporating

large-scale spatial modes of variation are needed to make the most efficient use of those sparse

observations.  In our comparisons, all methods except the in situ OI use large-scale spatial

modes.  However, even with the most efficient use of the available data, there are periods such as

the 1940s and before 1880 when data are very sparse, and analyses from those times should be

used with caution.

The monthly average ERSST.v2 analysis will be available on line along with the monthly

error estimate at the NCDC web site.  Analysis begins January 1853 and will be updated

monthly. (The site address has not yet been created, but should be available to list before

publication.)
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FIGURE CAPTIONS

Fig. 1.  Standard deviation of monthly SST anomalies over the 1982-1997 period from

the NOAA OI, ERSST.v1, and the in situ OI.  Values less than 0.2°C and more

than 0.6°C are shaded.

Fig. 2.  Ratios of temporal standard deviations from 15-year running periods, to the 1982-

1997 NOAA OI standard deviation, averaged over 60°S-60°N.  The ERSST.v2

ratios with different critical values are shown.  For comparison the ERSST.v1

ratio is also shown.

Fig. 3.  Standard deviation of monthly SST anomalies over the 1982-1997 period from

the ERSST.v2 analysis using 3 months of data centered on the analysis month. 

Values less than 0.2°C and more than 0.6°C are shaded.

Fig. 4.  Average 60° latitude to the pole SST from COADS and ERSST.v2 using the

quadratic method and a piece-wise linear method.  Temperatures are shown for

the warm season in each hemisphere, and are only averaged where co-located

with a COADS observation (upper).  Also shown is the number of seasonal

observations averaged for each SST (lower).  The horizontal axis is sea-ice

concentration in tenth.

Fig. 5.  Standard error types for the ERSST.v2 annual and 60°S-60°N average.  Error

types are the low-frequency analysis error (L.F.), the high-frequency analysis

error (H.F.), and the bias-correction error.

Fig. 6.  NINO 4 area annual average SST anomalies from ERSST.v2, ERSST.v1, and

HadISST.
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Fig. 7.  Temporal standard deviation ratios, as with Fig. 2, except for the areas 23°N-

60°N, 23°S-23°N, and 60°S-23°S, for ERSST.v2, ERSST.v1, and HadISST.

Fig. 8.  For the ERSST.v2 annual and 60°S-60°N average, the total standard error and the

root-mean-square difference (RMSD) from the average HadISST analysis.

Fig. 9.  For ERSST.v2 (left panels) and the in situ OI (right panels), monthly normalized

sampling standard error for January of 1900 and 1940.  Values below 0.3 and

above 0.9 are shaded.

Fig. 10.  Annual and spatial averaged ERSST.v2 with its 95% confidence interval (heavy

lines) and the average HadISST anomaly (light line), for the 60°S-60°N region

(upper panel) and the 60°S-23°S region (lower panel).

Fig. 11.  Monthly values of global spatial RMSD from the NOAA OI analysis, for the

1982-1997 period.  The RMSD for ERSST.v1, ERSST.v2 and HadISST are

given.  Time averages over the period are also given.
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TABLES

4444444444444444444444444444444444444444444444444444444444444444444

Table 1.  Average RMSD (°C) from COADS super observations for ERSST.v2 SST adjusted

using the quadratic method (Quad), and the piece-wise linear method with A = 0.0 (PL0), 0.4

(PL4), ..., 0.9 (PL9).  Results are given for the 1980-1989 period for December-February (DJF),

June-August (JJA), and all months (All).  Results are given for the two polar regions as

indicated.

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

60°N-90°N

       Quad   PL0   PL4   PL5   PL6   PL7   PL8   PL9

DJF   1.55  1.68  1.45  1.42  1.38  1.34  1.32  1.32

JJA   1.77  1.84  1.53  1.50  1.47  1.45  1.44  1.44

All   1.63  1.68  1.46  1.43  1.41  1.39  1.38  1.38

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

60°S-90°S

       Quad   PL0   PL4   PL5   PL6   PL7   PL8   PL9

DJF   0.68  0.76  0.62  0.61  0.60  0.60  0.60  0.60

JJA   1.10  0.88  0.85  0.85  0.84  0.84  0.85  0.85

All   0.71  0.71  0.62  0.62  0.62  0.62 0.62  0.62

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
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Table 2.  Spatial averages of temporal correlation of monthly SST anomalies.  The HadISST and

ERSST.v2 monthly anomalies are correlated for the indicated periods, averaged over the listed

regions.

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

1881-1940 1941-1997

60°S-60°N 0.53 0.70

60°N-90°N 0.66 0.61

20°N-60°N 0.54 0.77

20°S-20°N 0.59 0.77

60°S-20°S 0.44 0.57

90°S-60°S 0.22 0.36

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))


