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ABSTRACT

NOAA released the new 1981–2010 climate normals in July 2011. These included monthly and daily

normals of minimum and maximum temperature. Monthly normals were computed from monthly temper-

ature values that were corrected for biases (i.e., homogenized) due to changes in observing practices over the

course of the normals period (station moves, changes in observation time, and changes in instrumentation).

Daily temperature observations, however, are not homogenized, which could lead to inconsistencies between

the daily and monthly normals. This study offers a constrained harmonic technique that forces the daily

temperature normals to be consistent with the monthly temperature normals. This approach replaces the

cubic spline interpolation of monthly temperature normals that was used to compute earlier versions of

NOAA’s daily temperature normals. It effectively passes the homogenization applied at the monthly scale

down to the daily scale, resulting in a smooth annual cycle devoid of day-to-day sampling variability and

intermonth discontinuities.

1. Introduction

It is well known that daily temperature normals com-

puted by simply averaging the 30 values for each day of

the year (i.e., ‘‘raw daily normals’’) constitute a fairly

noisy time series because of sampling variability (see

Fig. 1). This effect is exacerbated if missing values are

present in the data record. There are numerous ways to

calculate daily temperature normals such that high-

frequency noise is suppressed, yielding a smooth repre-

sentation of the annual cycle.1 Two common approaches

are time series filtering and interpolation. The filtering

approach applies a low-pass filter to the raw daily nor-

mals. The interpolation approach fits a curve through

the 12 monthly normals. This method is extremely useful

in situations where the underlying daily data are not

available, which is not uncommon when dealing with

international data, as nations are more likely to make

their monthly data freely available rather than their daily

data (T. Peterson 2013, personal communication).

A factor complicating the computation of daily tem-

perature normals is the need to homogenize tempera-

ture time series. The U.S. surface temperature record is

known to contain inhomogeneities due to stationmoves,

instrumentation changes, and other changes in observing

practices (Menne et al. 2010). For example, the transition

from manual observations to Automated Surface Ob-

serving System by the National Weather Service in the

1990s is known to have introduced inhomogeneities into

those stations’ time series (Guttman and Baker 1996).

Homogenization is essential for ensuring that climate

normals are as representative of the current observing

practices as possible at the time of computation. Cur-

rently, the U.S. surface temperature record is only ho-

mogenized at themonthly (and annual) scale (Menne and

Williams 2009; Menne et al. 2009), whereas daily tem-

perature values from the Global Historical Climatology

Network–Daily (GHCN-Daily) are not (Menne et al.

2012), even though the mean monthly temperatures are

derived from daily observations. Figure 1 illustrates this

difference. The raw daily normals for minimum temper-

ature at the Reno, Nevada, station are ;28F (;1.18C)
cooler than the homogenized monthly normals for each

month of the year. As articulated by Menne et al. (2009),
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1 The term ‘‘annual cycle’’ is often used to refer to a single cosine,

sine, or harmonic even though the annual march of temperatures

for some locations can be highly asymmetric. Here, we refer to an

annual cycle as the annual march of temperatures whose mor-

phology can vary from station to station.
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this station’s minimum temperature time series was

homogenized to account for an apparent urbanization

signal, resulting in warmer temperature values over

1981–2010 and a substantially reduced upward trend

over the last three decades that is more in line with the

trends at neighboring stations (see their Fig. 8 for more

information).

Thus, we developed a technique for computing daily

normals with the following properties:

1) Day-to-day sampling variability is removed.

2) The monthly average of the daily temperatures ex-

actly equals the corresponding monthly normal for

each month, thereby ‘‘passing through’’ the monthly

homogeneity adjustments to the daily scale.

3) There are no intermonth discontinuities (which can

be evident in other methods when monthly varying

homogeneity adjustments are applied).

4) The shape of the annual cycle is influenced by the

daily data.

Prior to the release of the 1981–2010 climate normals,

daily climate normals computed at the National Oceanic

and Atmospheric Administration’s (NOAA’s) National

Climatic Data Center (NCDC) were not computed di-

rectly from daily data values. The 1971–2000 monthly

normals were homogenized following the procedures

outlined by Peterson and Easterling (1994) and Easterling

and Peterson (1995). Next, the daily temperature normals

were interpolated using a cubic spline through the 12

homogenized monthly normals. Endpoint issues were

addressed by applying the spline to a once-repeating

24-point July–June series (Owen and Whitehurst 2002).

The monthly means anchored the middle of the month;

for example, the 16 July value is set to the July normal

value. Finally, an ad hoc postspline correction was utilized

in an attempt to make the monthly and daily normals

consistent, as well as to make the temperature normals

consistent with the heating and cooling degree-day nor-

mals. However, this ad hoc approach could not guarantee

consistency for all stations (R. Heim Jr. 2012, personal

communication). Therefore, this cubic spline approach

does not satisfy property 2 listed above, or property 4 as

we show in section 4.

A method that satisfies all four properties is an ap-

proach we call the constrained harmonic fit, which was

utilized to compute NOAA’s 1981–2010 daily temper-

ature normals (Arguez et al. 2012). Harmonic analysis

(without constraints) has been shown to be a useful

tool for estimating an annual cycle (see examples 8.8–

8.11 in Wilks 2006). By incorporating constraints, we can

ensure that the average of the resulting daily temperature

normals for eachmonth exactly equals the corresponding

monthly temperature normal. The constrained harmonic

fit approach is described in greater detail in section 2.

Examples are shown in section 3, followed by a summary

in section 4.

2. Data and methodology

Daily maximum temperatures (tmax) and minimum

temperatures (tmin) were extracted from GHCN-Daily

for 2041 U.S. stations. The data values in GHCN-Daily

have undergone extensive quality control as described

by Durre et al. 2010, resulting in some values that are

flagged as erroneous. Each station has at least 25 non-

flagged values available for each Julian day (t), for both

tmax and tmin, over the 1981–2010 time period. The raw

daily normals y(t) are calculated as the simple arithmetic

mean of the valid values for each Julian day. The ho-

mogenized monthly normals of tmin and tmax are also

used. The generalized approach presented here does not

depend on the manner in which monthly temperature

normals are calculated. For the purposes of this study, we

assume that accurate monthly temperature normals have

been computed a priori for use in calculating daily tem-

perature normals.

We canmodel the daily temperature normals function

as a linear combination of harmonics. As described by

Wilks (2006), a single harmonic can sometimes provide

a reasonable representation of the annual cycle, but ad-

ditional harmonics are needed in order to account for

features that deviate from a single sinusoidal shape, such

as asymmetries between summer and winter, or between

FIG. 1. Raw daily averages of minimum temperatures for Reno,

NV (light gray curve): monthly averages computed from the raw

daily averages (light gray squares) and homogenized monthly

normals (black circles).
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transition seasons. The equation for the harmonic fit h(t)

takes the familiar form

h(t)5A01 �
M

k51

[Ak cos(vkt)1Bk sin(vkt)] , (1)

where t ranges from 1 toN5 365, vk 5 2pk/N, andM is

the number of harmonics used. If M 5 N/2, then h(t) 5
y(t); the curve y(t) has been reconstructed exactly via the

superposition of sines and cosines. IfM�N/2, then h(t)

represents a heavily smoothed version of y(t), equiva-

lent to a low-pass filter. If no constraints are applied,

then we can solve for the coefficient vectors A and B in

(1) via least squares minimization of the following cost

function:

Ju(A,B)5 �
N

t51

"
y(t)2A02 �

M

k51

[Ak cos(vkt)

1Bk sin(vkt)]

#2
. (2)

This system of linear equations (2M 1 1 equations and

2M 1 1 unknowns) can be solved fairly easily using sin-

gular value decomposition (SVD). For this unconstrained

case, the coefficient vectorsA andB are more commonly

calculated using a Fourier transform.

However, we need to constrain the coefficient values

such that the means of the daily normals for a partic-

ular month are consistent with the monthly normal.

For example, we need to guarantee that the average

of the 31 daily tmax normals in January will equal the

monthly tmax normal for January. The cost function

with 12 monthly constraints is

Jc(A,B,l)5 �
N

t51

[y(t)2h(t)]21 ljan

"
Tjan2

1

31
�
31

t51

h(t)

#

1 lfeb

"
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1

28
�
59

t532

h(t)

#
. . .

1 ldec

"
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1

31
�
365

t5335

h(t)

#
,

(3)

FIG. 2. (a) Raw daily averages of maximum temperatures for Salinas, CA (light gray curve).

Bold black curve shows constrained harmonic fit for this time series. Dashed gray curve shows

the cubic spline interpolation. Dotted black line indicates the (unconstrained) harmonic fit

using only one harmonic. (b) As in (a), but for the June–August period; black circles indicate

the homogenized monthly normals.
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whereTjan is themonthly temperature normal for January,

Tfeb is the monthly temperature normal for February, etc.

The l terms are Lagrange multipliers that impose the

constraints. The above formulation follows the ‘‘earlier

tradition’’ or the ‘‘Lagrangian function approach’’ de-

scribed by Kalman (2009). Once again, we can solve this

linear system of equations using SVD.

If the number of harmonics M is $6, then the con-

straints may be met exactly. Otherwise, the linear system

is overdetermined and, though SVD can yield a solution

for the coefficients, the constraints will not be met, as we

will illustrate in the next section. After experimenting

with M $ 6 and visually inspecting the smoothing pro-

vided on several samples, we chose to setM equal to 6 for

this exercise, although M . 6 can be a viable alternative

for other applications so long as the potential for over-

fitting is accounted for. The constrained harmonic fit was

calculated for tmax and tmin for all 2041 stations.

3. Results

The raw daily tmax normal curve for Salinas, California

(Fig. 2a), clearly demonstrates an annual cycle that

deviates from a classic sinusoidal curve. In fact, using a

single harmonic (M 5 1), the constrained harmonic fit

would place the annual peak in earlyAugust, whereas the

daily data indicate the warmest time of year in Salinas is

September–early October. Salinas is representative of

many stations in the western United States that have a

steeper transition during fall and a more gradual transi-

tion during spring. Both the cubic spline interpolation

and the constrained harmonic fit (M5 6) do a respectable

job of capturing the annual cycle in Salinas [themaximum

absolute difference between the two is;0.58F (;0.38C)],
although the cubic spline interpolation is incapable of

resolving intramonth fluctuations (Fig. 2b). For example,

the raw daily normals clearly indicate the presence of a

local minimum in late July, a feature that is captured by

the constrained harmonic fit, yet the cubic spline in-

terpolation increases monotonically from June through

August.

The raw daily tmax normal curve for Beaver City,

Nebraska (Fig. 3), exhibits strong continentality, in sharp

contrast to the much narrower annual range of tmax in

coastal California as seen in Salinas. The raw daily nor-

mals are noticeably warmer (;2.58F; ;1.48C) than the

cubic spline interpolation or the constrained harmonic fit,

as the monthly homogenization procedure had the net

FIG. 3. As in Fig. 2, but for maximum temperatures in Beaver City, NE. December values are

highlighted in the inset; the gray square indicates the average of the December values of the

cubic spline interpolation and the black circle indicates the homogenized December normal.
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effect of lowering the monthly tmax values for Beaver

City (in contrast to Reno tmin; Fig. 1). The constrained

harmonic fit is shifted toward cooler tmax values to

accommodate this, whereas the cubic spline interpo-

lation is simply fit through the cooler homogenized

normals. The two methods result in daily temperature

normals that differ by as much as 61.58F (60.88C) for
specific days, particularly in the warmest and coldest

months, although the annual means differ by less than

0.18F (0.068C).
Consider how the cubic spline interpolation performs

inDecember for Beaver City tmax. TheDecember tmax

normal is 40.88F (4.98C), and the average of the constrained
harmonic fit values for December is also 40.88F (4.98C),
given the hard constraint. The cubic spline interpolation

is anchored at 40.88F (4.98C) on 16December (themiddle

of the month), but early December values range from

418 to 468F (5.08–7.88C), whereas late December values

bottom out near 408F (4.48C). As a result, themean of the

cubic spline interpolation for December is over 0.78F
(0.48C) warmer than the December normal (see inset in

Fig. 3). This highlights the inability of the cubic spline

interpolation to preserve the homogenizedmonthlymean.

This leads the cubic spline interpolation to underestimate

peaks in summer and overestimate minima in winter,

resulting in a slight underestimation of total variancewith

respect to the raw daily normals as well as the constrained

harmonic fit approach, which does not result in lowered

total variance (not shown).

Overall, the mean differences between the constrained

harmonic fit and the cubic spline interpolation results for

the 2041 stations considered is essentially zero for both

tmax and tmin. However, individual values can vary to

some degree, as seen in Figs. 2 and 3. The average ab-

solute difference between the two approaches is 0.38F
(0.28C) for both tmax and tmin. In terms of maintaining

consistency between the monthly temperature normals

and the resulting daily temperature normals, the con-

strained harmonic fit approach with (M 5 6) has zero

discrepancy, by design, for all station months. For both

tmax and tmin, the spline fit interpolation is typically

off by 0.28F (0.18C) in an absolute sense from main-

taining consistency, and the discrepancy can be as high

as 1.08F (0.68C). As intimated by Fig. 3, the largest

FIG. 4. Raw daily averages of tmin forHartford, CT, for theOctober–December period (light

gray curve). Solid black curve shows the constrained harmonic fit for this time series. Dark gray

circles indicate an unconstrained harmonic fit (M 5 6), subsequently adjusted such that the

average of the daily values in a month matches the corresponding, homogenized monthly

normal.
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inconsistencies tend to occur in summer and winter

months near the maxima and minima for the year.

An alternative to these methods is to apply a low-pass

filter to the raw daily normals, such as successive passes

of the 1–2–1 filter (see von Storch and Zwiers 1999).

However, this simple approach cannot guarantee pres-

ervation of the mean. Further, low-pass filtering typically

results in reduced variance (e.g., see Arguez et al. 2008),

which can lead to severe underestimation and over-

estimation of highs and lows, respectively.

Other potential options involve a multistep approach.

For example, one could pass the monthly adjustments

down to either the daily data or to the raw daily normals

series (e.g., Vincent et al. 2002). Then, an unconstrained

harmonic fit could be used to derive the daily tempera-

ture normals. Again, this method does not guarantee

preservation of the monthly normals. Another approach

is to compute the unconstrained harmonic fit of the raw

daily normals, and then adjust the values in each month

up or down tomatch the correspondingmonthly normal.

However, this introduces intermonth discontinuities, as

seen when it is applied to the raw daily tmin normals for

Hartford, Connecticut (Fig. 4).

As stated earlier, the constrained harmonic fit does not

preserve the mean monthly normals when fewer than six

harmonics are used. Table 1 shows, as a function ofM (the

number of harmonics used), the root-mean-square errors

(RMSEs) between the homogenized monthly normals

and the monthly averages of the constrained harmonic fit

values for the four time series considered in this inves-

tigation. For example, the M 5 1 case for Salinas tmax,

which was displayed graphically in Fig. 2a, has an RMSE

value of 1.698F (0.98C). The constraints in (3) ensure that

the RMSE will equal 0 for every month when M $ 6,

which is reflected in Table 1.

4. Summary

The constrained harmonic fit effectively smooths the

raw daily normals without introducing discontinuities,

and ensures preservation of the mean monthly normals.

The cubic spline interpolation approach results in a

smooth and continuous daily temperature normals curve.

However, it does not always capture intraseasonal

fluctuations as seen in Fig. 2a, and it does not guarantee

preservation of the mean monthly normals as docu-

mented in Fig. 3.

The constrained harmonic fit described here offers

a one-step approach for computing daily temperature

normals satisfying the four properties listed in the in-

troduction. It is particularly useful when monthly tem-

peratures are homogenized but the underlying daily data

values are not. However, it also accommodates in-

herent inconsistencies between monthly and daily data

caused by other factors, such as separate quality control

of monthly and daily temperatures or the manner in

whichmonthly temperature normals are computed.We

recommend the constrained harmonic fit approach for

computation of daily temperature normals when the

underlying daily data are available and monthly tem-

perature data are deemed to be of superior quality versus

the daily data.
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