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Abstract 

 A recent comprehensive effort to digitize United States daily temperature and 

precipitation data observed prior to 1948 has resulted in a major enhancement in the 

computer database of the records of the National Weather Service’s cooperative observer 

network.  Previous digitization efforts had been selective, concentrating on state or 

regional areas.  Special quality control procedures were applied to these data to enhance 

their value for climatological analysis.  The procedures involved a two-step process.  In 

the first step, each individual temperature and precipitation data value was evaluated 

against a set of objective screening criteria to flag outliers.  These criteria included 

extreme limits and spatial comparisons with nearby stations.  The following data were 

automatically flagged: (1) all precipitation values exceeding 254 mm (10 inches) and (2) 

all temperature values whose anomaly from the monthly mean for that station exceeded 5 

standard deviations.  Additional values were flagged based on differences with nearby 

stations; in this case, metrics were used to rank outliers so that the limited resources were 

concentrated on those values most likely to be invalid.  In the second step, each outlier 

was manually assessed by climatologists and assigned one of four flags: valid, plausible, 

questionable, or invalid.  In excess of 22,400 values were manually assessed of which 

about 48% were judged to be invalid.  Although additional manual assessment of outliers 

might further improve the quality of the database, the procedures applied in this study 

appear to have been successful in identifying the most flagrant errors.
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1. Introduction 

 The National Weather Service’s (NWS) cooperative observer network (COOP) is 

the core climate network of the U.S.  In operation since the late 19th century, it consists 

primarily of volunteer observers using standard equipment provided by the NWS.  The 

typical suite of elements observed daily include precipitation (P), maximum temperature 

(Tmax), minimum temperature (Tmin), snowfall (Sf), and snow depth (Sd).  Some stations 

report only precipitation variables.  A few stations observe other variables such as pan 

evaporation and soil temperature.  

 Beginning in 1948 (when surplus keypunch machines were obtained from the 

U.S. Postal Service by the then-existing New Orleans branch of NCDC), cooperative 

observations were routinely stored on machine-readable punch cards. As computers 

became more widely available, these digitized monthly data were stored on electronic 

media.  Although there have been occasional projects to retroactively digitize selected 

data, most pre-1948 observations have been available only on paper or microfiche.  

Recently, the U.S. Congress has provided funding to the National Climatic Data Center 

(NCDC) for the Climate Database Modernization Program (CDMP 2001), the goal of 

which is to convert data available only in hard-copy form to computerized formats.  The 

pre-1948 COOP data was one of the first data sets chosen for this conversion. 

There are a number of potential sources of errors or quality issues in the digitized 

data set, which generally fall into three categories: observer error, station discontinuity, 

and digitization errors.  Observer errors include errors in reading the instruments or in 

writing the observations on the form, and problems with the equipment, including liquid 

mercury separation in the thermometers (which a good observer would presumably 
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notice).  Station discontinuity issues include potential discontinuities introduced into a 

station’s climate record by changes in instrumentation/shields, observing practices, 

changes in station location, and exposure.  The digitization process may introduce errors 

into the digitized data set through errors in properly identifying stations by their station 

ID numbers, errors in identifying data element types (e.g., snowfall keyed as snow 

depth), and keying errors in individual values.  Keying errors may be increased by poor 

legibility of the preserved documents. 

The COOP data represent the highest and lowest temperature values, or 

precipitation totals, at any time over the 24 hours ending at the time of observation, and 

are ascribed by long-standing convention to the date of the observation (when 

instruments are reset).  Tmax, Tmin, P, and Sf can in theory, and often in reality, occur at 

any time during these 24 hours.  “Shifting” refers to the assignment of a value (by either 

the observer or subsequent processing) to a presumed calendar date of actual occurrence, 

typically the prior day, rather than to the date of the observation (instrument reset), as 

required by adherence to the formal convention mentioned above.  Shifting errors are 

most common in the Tmax data for observers with a morning (a.m.) time of observation.  

Since on most days the actual time of occurrence of Tmax is the afternoon of the prior day, 

some observers have mistakenly believed that they should record the value on the day 

that it occurred.  The presence of shifting creates problems for spatial quality control 

(QC) when comparing shifted values with observations from neighboring stations which 

have been correctly recorded.  Also, to complicate matters, during certain multi-year 

intervals prior to 1948, Tmax values for morning observers were routinely shifted back one 

day by the data processing system before being printed in Climatological Data, the 
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official publication for COOP data.  This is not mentioned in those publications.  Since 

some past digitization projects (e.g. Kunkel et al. 1998) keyed data from Climatological 

Data, there are additional shifted values in COOP data that were used in the QC of 

CDMP data, which were keyed from the original forms. 

The primary focus of this project was on quality issues affecting individual 

values, particularly observer and keying errors.  In this article, the data set is described, 

along with an analysis of the rate of keying errors in individual values.  Objective spatial 

tests for identifying outliers in daily Tmax, Tmin, and P were used to flag outliers; these 

outliers were manually assessed for their validity.  The manual assessment process and its 

results are described in detail, particularly their indications for observer errors in 

individual values.  One focus of the QC effort was on improving the value of the data set 

for analysis of extreme temperature and heavy precipitation events and some of the tests 

were designed to identify outliers in extreme values. 

The continuing concern about climate variability and change ensures that the 

COOP data will be heavily used for the indefinite future.  Therefore, this paper provides 

considerable detail so that future users can appropriately consider data quality issues in 

their studies and applications. 

 

2. Data Set Description 

 COOP observations are recorded on paper forms (1 sheet per month) and are sent 

to NCDC at the end of each month.  In the 1980s, NCDC copied all paper forms onto 

microfiche.  The keying of these data in CDMP was done from the microfiche images by 

Image Entry, a private contractor located in London, KY.  All monthly data sheets were 
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double-keyed in a two-person process:  the second keyer resolved discrepancies between 

his/her data and the first set of keyed data as he/she keyed the data.  Double-keying 

minimizes the number of keystroke errors, but does not entirely eliminate them, nor does 

it eliminate problems due to illegibility of the form.  Extremes tests (using state monthly 

extremes tables; see National Climatic Data Center, 2003) were applied during post-

processing to help ensure accurate keying.  Values that failed the extremes tests but 

verified with the source were retained.  Estimated values were added to the database to 

fill in some missing values; in particular, if the daily precipitation values added up to the 

observer-supplied monthly total for a station, the other days were zero-filled.  The total 

number of values keyed for this project exceeded 300,000,000. 

 This data set is designated as DSI-3206 by NCDC.  The digital COOP data 

available prior to this is designated as DSI-3200; this includes the routinely keyed COOP 

data plus the results of various state- and region-based keying projects done through the 

years.  The digitization and quality control processes for these projects varied.  A recently 

developed data set of keyed COOP data done for ten U.S. states (Kunkel et al. 1998) was 

designated as DSI-3205; this set includes data for the nine midwestern states of Illinois, 

Indiana, Iowa, Kentucky, Missouri, Minnesota, Michigan, Ohio, Wisconsin, and also 

New Mexico.  The data for DSI-3205 were single-keyed from the publication 

Climatological Data (not the original COOP forms) and passed through quality control 

tests similar to those used on the current data keyed for DSI-3200.  These three data sets, 

DSI-3200, DSI-3205, and DSI-3206, were combined for this project to create the data set 

of all keyed COOP data. 
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 The addition of stations in DSI-3206 compared to what had been previously 

available in DSI-3200 and DSI-3205 (Figs. 1-3) represents a substantial improvement to 

the digital record.  For temperature (Fig. 1), the number of additional stations is about 

1000 in the late 1800s to about 2000 in the 1940s.  For precipitation (Fig. 2), the increase 

is more than 1000 in the late 1800s to about 4000 in the 1940s.  (The peak between 1948 

and 1951 is due to the temporary inclusion of stations from the Hydroclimatic Network of 

the U.S. Army Corps of Engineers).  The spatial distribution of additional long-term 

(defined here as those with less than 10% missing data for the period 1895-2000) 

temperature stations (Fig. 3) indicates substantial increases in density along the East, 

Gulf, and West Coasts.  Less significant increases occurred in parts of the intermountain 

West (where fewer COOP stations were operational in the pre-1948 era) and in the upper 

Midwest [where most data were already keyed in the project of Kunkel et al. (1998)].  A 

similar distribution characterizes the additional long-term precipitation stations (not 

shown). 

 

3. Keying Errors in DSI-3206 

 Ideally, in the keying process for DSI-3206, only data that were not already 

included in DSI-3200/DSI-3205 would have been keyed.  In practice, data for some 

stations for some periods were re-keyed for DSI-3206, resulting in an inadvertent overlap 

between the old and new digitized data sets.  The number of keying errors in DSI-3206 

may be estimated by examining the inadvertent overlap between the digitized data newly 

available in DSI-3206 and the digitized data previously available in DSI-3200/DSI-3205, 

where values appear in both datasets for the same day (here keying error rates will refer 
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to errors in values, not errors in individual digits).  Because of the focus of DSI-3205 on 

the Midwest (plus New Mexico), the degree of overlap between DSI-3206 and DSI-

3200/DSI-3205 varies greatly between the Midwest and the rest of the country.  Table 1 

includes overlaps for the Midwest (plus New Mexico) separate from the rest of the 

country and expresses overlap as the percentage of all days that appear in both datasets.  

In general, the overlap is much greater for the Midwest, about 54% for Tmax and Tmin and 

70% for P.  Since DSI-3205 included snowfall and snow depth only for the state of 

Michigan, the overlap for these element types is much lower, 6% and 13%, respectively.  

For the rest of the country, the overlap ranges from 2 to 3.5%. 

Discrepancies in values for days appearing in both datasets must result from 

individual keying errors in either dataset or publication errors in Climatological Data.  

Keying errors may be individual keystroke errors or keying errors due to the illegibility 

of the preserved or published version of the data.  The frequency of discrepancies ranges 

from less than 1% for snowfall to over 8% for Tmax.  Since we do not know of any issues 

systematically affecting the discrepancy rate for Tmin, the 2% discrepancy rate is assumed 

here to be the individual keying error rate in values.  The error rate for Tmax is greatly 

influenced by shifted values.  An analysis indicated that shifting accounts for about two-

thirds of the discrepancies and thus the keying error rate is less than 3%, or similar to 

Tmin. 

A number of the discrepancies were examined to try to determine their source.  In 

practice, this process involved a person  (subjectively) comparing the two keyed values 

with the microfiche of the original form.  The majority of individual values with 

discrepancies were hard to read on the microfiche due to legibility issues, usually a 
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combination of poor handwriting and/or poor microfiche reproduction of the original 

records.  Due to this legibility issue, in at least 10% of the cases, on examination of the 

microfiche, the expert climatologist could not read the value clearly enough to say which 

of the two keyed values was correct.  The discrepancy rates shown in Table 1 thus 

represent upper limits on the keying error rates in individual values in both digital data 

sets. 

For Tmax and Tmin, the great majority (approximately 88%) of the discrepancies, 

and therefore individual keying errors, are 5.6°C (10°F) or less (All original units in the 

data base are English, and for this study were entered and manipulated exclusively in 

those units).  Due to their small magnitude, they are undetectable by the quality control 

tests described in the next section.  Approximately 6% of the discrepancies, affecting 

about 0.1% of all temperature values, are 11.1°C (20°F) or more.  Approximately 6% of 

the precipitation discrepancies, affecting less than 0.1% of all precipitation values, are 

more than one inch.  These larger errors are generally detectable by the quality control 

tests described in the next section. 

 

4. Quality Control Process 

 The primary purpose of the quality control for this project was to identify the 

largest errors in individual values, particularly those that might affect analyses of extreme 

temperature and heavy precipitation events.  Automated procedures were used to identify 

unusual values (“outliers”).  Outliers were then examined by trained climatologists to 

assess their validity.  A basic set of procedures was applied to data for all precipitation 

stations and for all temperature stations with at least 3 years of data.  A more detailed set 
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of procedures was applied to long-term stations, defined earlier as those with less than 

10% missing data for the period 1895-2000.  These stations will be heavily utilized to 

study climate trends, thus warranting a greater allocation of quality control resources. 

a. Basic Procedures 

 The basic procedures identified the most extreme values in the dataset using either 

absolute thresholds or thresholds based on the station’s own climatology.  For 

precipitation, any value in the database that exceeded 254 mm (10 inches) was flagged as 

an outlier (accumulated values were not excluded from being flagged, but the support 

tools, specifically a list of values on the days prior to the flagged day, available to the 

assessor provided the necessary information to recognize the possibility of an 

accumulated value).  This test was performed in order to identify (and flag as invalid) 

obvious erroneous values for all stations, not just those with long records.  For Tmax and 

Tmin, a daily value Ti was flagged as an outlier if its standardized anomaly from the 

monthly mean exceeded 5.0 in absolute value, i.e. 

0.5>
−

m

mi TT
σ

    (1) 

where m is the month, Tm is the monthly mean Tmax or Tmin, and σm  is the standard 

deviation of daily Tmax and Tmin for the month.  As noted above, the temperature tests 

were applied only to stations with at least 3 years of data.  The threshold of 5 in eq. (1) 

was determined empirically; as indicated in section 5a, the percentage of invalid values 

for anomalies less than 5 was quite low and the decision was made not to expend limited 

validation resources on such values.  The calculation of σm was performed using all 

values, including possible invalid ones.  A more precise approach would be an iteration in 
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which the process is repeated by recalculating σm after the initial set of invalid values is 

removed from the dataset, thereby adding additional outliers (because σm would be 

lower).  Although this iteration was not performed, it is unlikely to have a major impact, 

again because the percentage of invalid values for anomalies around 5 is quite low. 

b. Procedures Applied to Long-term Temperature Stations 

The second set of procedures identified outliers by performing spatial 

comparisons using nearby stations, along with double-checks based on temporal 

continuity and extremes.  Daily gridded fields (1° longitude X 2/3° latitude) of Tmax and 

of Tmin for the period of 1895-1948 were produced using the objective analysis scheme of 

Barnes (1964) as modified by Achtemeier (1987, 1989).  For each station, each daily 

temperature value Ti was compared with an estimate Ei from the corresponding gridded 

field using a bi-linear interpolation from the four nearest grid points.  A daily difference 

Di was calculated as  

    ( ) ( )mimii TTEED −−−=     (2) 

where Em is the monthly mean of the gridded estimates interpolated to the station location 

and Tm is the monthly mean of the station temperatures.  Next, 12 cumulative distribution 

functions, one for each month, were generated from the set of Di values.  An example is 

shown in Fig. 4 for the month of December for Grand Marais, Michigan.  D0.01 and D0.99 

are the difference limits for the fractional cumulative frequency values of 0.01 and 0.99, 

respectively, based on approximately 1050 observations.  Because there often was a lack 

of symmetry between the positive and negative sides of the distribution, the mean of the 

two difference limits, defined as: 

    ( ) 2/99.001.0 DDDmean +=     (3) 
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was used in the following metric. 

For all values Di, a “quality index”, Qi, was calculated to rank the values in order 

of likely validity.  This index was defined as: 

( ) ( )meanimeanxi DDDDQ −−= /    (4) 

where Dx is D0.01 if the denominator is negative, or is D0.99 if the denominator is positive, 

such that Qi is always greater than 0.  Values with lower Q are more extreme and are 

more likely to be invalid.  Values with higher Q are likely to be valid, including a Q of 

infinity, when Di = Dmean. 

 To illustrate the magnitude of the potential errors in the outliers as defined by the 

Q value, a random number generator was used to simulate “observer errors” in the daily 

values for the station at Urbana, Illinois.  The random errors were uniformly distributed 

over the range from -16.7°C (-30°F) to +16.7°C (+30°F),  and these values were added to 

each daily Tmax and each daily Tmin in the entire period of record.  For each error value, Q 

was calculated using the original climatology of the station.  The Q value versus error 

distribution is shown in Figure 5 for all Tmax’s within the period 1896-1948.  For large 

errors of magnitude 11.1°C (20°F) or more, Q is low, less than 0.5.  For small errors with 

magnitude less than 2.8°C (5°F), Q is high, greater than 0.5.  The Q value versus error 

distribution is similar for Tmin (not shown). 

For this project, all outliers with Q less than or equal to 0.34 were manually 

evaluated; this cutoff was empirically determined by the accumulated number of values 

that could be manually assessed with available resources.  As indicated in Figure 5 

(horizontal line) for Urbana, this Q value cutoff will include almost all (99%) of the 

errors with magnitude greater than 11.1°C (20°F), as well as a significant portion (66%) 
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of those with magnitude between 5.6°C (10°F) and 11.1°C (20°F).  For stations with a 

lower correlation between the daily station data and the daily grid estimates, such as 

those in the mountainous west, the range in Q of the errors with magnitude greater than 

11.1°C (20°F) is greater, so the Q value cutoff of 0.34 used here results in a greater 

percentage of those large errors being excluded from the manual verification process. 

c. Procedures Applied to Long-term Precipitation Stations 

 A similar methodology, using gridded estimates, was tested for daily 

precipitation.  However, an initial test indicated that there were many valid precipitation 

values for which the calculated Q values were very low, thus requiring much unnecessary 

manual assessment.  This was due to the high spatial variability of precipitation during 

convective situations.  An alternate method was developed that proved to be superior at 

selectively identifying invalid values.  For each station, a set of nearest neighbor stations 

was identified based on geographical distance.  All non-zero daily values were ranked 

from lowest to highest.  Outlier values were defined as those exceeding the 95th percentile 

threshold and were subjected to further tests to identify those values that were most likely 

to be invalid. 

 For each outlying value, Pi, two indicators of Q were calculated.  The first 

indicator incorporated the actual daily precipitation amounts as follows: 

( ) inamt P/Pn,iQ =     (6) 

where Qamt (i, n) is the Q indicator using precipitation amounts for day i (Pi) and nearest 

neighbor station n and Pn is the precipitation amount for station n.  The second indicator 

was calculated from a daily percentile rank as follows: 

   Qper (i, n) = (100 – Ri) / (100 – Rn)       (7) 
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where Qper (i, n) is the Q indicator using precipitation percentiles and Rn and Ri are the 

monthly percentile ranks for the nearest neighbor and the station being evaluated, 

respectively.  The monthly percentiles were obtained by ranking all non-zero 

precipitation values for the month. 

 The final value of Q, Qi, for Pi is the maximum individual Q value among the set 

of Qamt and Qper values.  The key aspect of the procedure is that a high Q value will be 

calculated if any single nearest neighbor station has a precipitation value that is 

seasonably high.  Values with very low Q only occur when no nearby station has a high 

precipitation value.  Our tests indicated that this procedure was effective at selecting 

invalid values and maximizing use of personnel resources for manual assessment. 

d. Manual Assessment 

 The application of the manual assessment was developed by having a group of 

experienced climatologists familiar with observational data independently examine a 

small sub-set of outliers (50-100), and then discuss the differences in any individual 

assessments until the group was in agreement as to the application of the quality flags to 

be applied to the outliers.  This was an iterative process that included the development of 

procedures for calculating Q.  The general consensus of the group was that the manual 

assessment would give the observations the benefit of the doubt, that is, an outlier was 

assumed to be valid if there was at least one piece of confirming evidence. In addition, 

written guidelines were developed to assist the assessors; these are given in the 

Appendix.  Each outlier was assessed and assigned one of four flags described as follows: 

“Valid” There is some confirming evidence.  Usually, this evidence 

consisted of similar values at one or more nearby stations.  Or, 
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the observed spatial pattern of values was recognized as a 

commonly-occurring one for the region and time of year. 

“Plausible” There may be no nearby stations with similar values, but the 

assessor recognizes that such a pattern has occurred in the past 

at the location and time of year. 

“Questionable” The assessor judges that the observed pattern is not a regularly 

occurring one and the value is unlikely to be valid, but cannot 

discount the physical possibility of the observed pattern. 

“Invalid” The assessor judges that the observed value is outside a 

physically possible range or that the observed spatial pattern is 

not likely to be physically possible. 

 To aid in these assessments, several tools were available to the assessor.  A web 

site was developed to provide for simultaneous display of these tools.  The web site 

provided the advantage of allowing access by geographically distributed assessors.  Also, 

the assessors’ flags and comments were automatically recorded by the web site, so that 

post-processing did not require any further digitization of the information.  The tools 

provided on the web site were as follows: 

1) A table displaying 15 days of data centered on the outlier day for that station.  All data 

available in that time period, including precipitation, snowfall, and snow depth 

were printed in the table. 

2) Time series graph, containing Tmax and Tmin extremes, as well as accumulated 

precipitation and accumulated liquid snow equivalent values for the period from 

60 days before to 60 days after the day of the value being assessed.   
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3) Maps displaying the value being assessed and the values of up to 50 nearby stations for 

the day of the outlier and a day on either side of the outlier to encompass different 

times of observations and possible shifted observations. 

4) Map displaying the neighboring and outlier station elevation and their estimated time 

of observation only for those nearest neighbors which were plotted in the above 

map.  The outlier station was highlighted in bold. 

5) Maps displaying the difference between the plotted values and the climatological mean 

for the month in which the day falls, for the outlier day and one day on either side.   

6) Maps displaying the normalized daily anomaly of the value being assessed and of the 

values of the neighboring stations for the outlier day and one day on either side. 

7) Table of precipitation and plots of temperatures for the outlier station’s nine nearest 

neighbors.  The temperature plots included 15-day time series plots centered on 

the day in question. 

8) Web-links to state topographic maps and historical daily weather maps, which opened 

into a new browser window. 

 

5.  Summary of Validations 

a. Invalid Rates 

 The basic temperature test was applied to over 82 million daily Tmax and Tmin.  A 

total of 4380 values were identified that exceeded the limit on the standardized anomaly 

(see eq. 1).  The results of the manual assessment (Fig. 6) show a clear and expected 

relationship to the magnitude of the standardized anomaly.  For standardized anomalies 

of greater than 7, more than 80% of the 153 values were judged to be invalid.  This 
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percentage drops to about 20% for the 642 values in the 5.0-5.5 category.  As the 

magnitude of the standardized anomaly category decreases, the number of values in a 

fixed-width category increases, from 95 in the 8+ category to 642 in the 5.0-5.5 category.  

For this test, an invalid rate of 20% or less for the 5.0-5.5 category represents a point of 

diminishing returns beyond which the cost in time increases significantly, in part because 

of the much larger number of candidates to process, and in part because the values are 

much more plausible, and thus less likely to obviously be wrong, and require more 

attention from the assessor. 

 The basic precipitation test, flagging values greater than or equal to 254 mm (10 

inches), was applied to over 29 million non-zero precipitation values.  A total of 498 

precipitation values exceeded 254 mm and were manually assessed.  The results of the 

manual assessment (Fig. 7) indicate that the percentage of invalid values decreased with 

decreasing amount, from about 95% for the 18 values greater than 508 mm (20 inches) to 

about 20% for the 270 values in the 254-305 mm (10-12 inch) category.  As was the case 

for the basic temperature test, the manual validation of outliers flagged from the basic 

precipitation test was not applied beyond the fixed-width category giving an invalid rate 

of about 20%. 

 The spatial tests were applied to over 28 million daily Tmax and Tmin values for 

884 long-term temperature stations.  A total of 7390 values with Q less than or equal to 

0.34 were manually assessed (0.03% of the values tested).  The results of the manual 

assessment (Fig. 8) indicate that the percentage of invalid values decreased with 

increasing Q, from 100% for Q < 0.10 to about 70% for the 0.30-0.34 category.  The next 

category, 0.35-0.40, includes 13248 values.  The validation of this category would have 
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required a significant portion of the resources available for the project.  There are a very 

large number of values (973,036) in the Q range of 0.35-1.0.  Thus, there remain many 

invalid values in the dataset that could not be examined because of resource limitations.  

However, the values in this category will be less extreme, as indicated by their higher Q 

value, and thus have a lesser impact on the extreme event focus of this study. 

 Two additional algorithms to identify Tmax and Tmin outliers that are more likely to 

be invalid were tested on the outliers in the Q range of 0.35-1.0.  The first was an 

extremes test, with the monthly cutoff limits of 1% and 99% generated from each 

station’s climatology.  The second was a temporal (spike) test, with the monthly cutoff 

limits of 5% (on each end of the distribution) also generated from each station’s 

climatology.  These two tests are described in Kunkel et al. (1998).  7083 (of the 

973,036) values were flagged by the extremes test, and 472 were flagged by the spike 

test.  Resources were not available to validate all of these values, so a portion of them, 

those with lowest Q, were validated.  1209 of the values flagged by the extremes test 

were validated, and 72 of the values flagged by the spike test.  Of these validated values, 

well over 80% were assessed as invalid, a higher rate than that suggested by the 

assessment of the outliers identified by Q alone.  This suggests that, if more, but limited, 

resources were available for continued assessment, a combination of tests for identifying 

outliers would be helpful. 

For the nearest neighbor tests applied to the 1044 long-term precipitation stations, 

a total of 8459 values with Q less than or equal to 0.50 were manually assessed.  The 

results of the manual assessment (Fig. 9) indicate that the percentage of invalid values 

decreased with increasing Q, from roughly 40% to less than 10% at a Q value of 0.50.  
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Precipitation outliers were more difficult to assess due to the greater spatial and temporal 

variability of precipitation and, as a result, many of the values were flagged as plausible 

or questionable.  The results of the manual assessment (Fig. 9) include the interesting 

feature that a greater portion of the lower-Q outliers were assessed as “valid” than for 

higher-Q outliers.  “Valid” outliers with lower Q included those along coastlines, where 

they could be influenced by tropical systems, and those in mountainous regions, where 

orographic lift was the primary forcing mechanism for precipitation.  The higher-Q 

outliers included values associated with summertime convection, and were not 

necessarily limited to coastal stations.  For these events, the typical spatial distribution of 

the convection made it very difficult to declare an outlier “valid”; rather, these outliers 

were much more likely to be assessed as “plausible.” 

b.  Spatial and Temporal Distribution of Outliers Generated by Spatial Tests 

 The distribution of manually assessed outliers among nine geographic regions of 

the U.S. is relatively uniform, both in the percent of outliers flagged from the available 

long-term stations for each region, and in the proportion of each validation code assigned 

to the outliers (Table 2).  The percent of Tmax and Tmin values flagged as outliers is higher 

in the eastern two-thirds of the country and lower in the western third.  The percent of 

precipitation values flagged as outliers and tested is higher in the south, and lower in the 

north.  Within each of the three element types, the proportion of each validation code 

assigned to the outliers is relatively consistent among the regions.  A somewhat larger 

number of minimum temperatures than maximum temperatures were assessed as invalid, 

which implies either that the Q test was more effective at identifying invalid minimum 
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temperatures, or that the maximum temperatures were more difficult to assess due to 

factors such as the observation time, or both. 

 Over the period for which outliers were generated, 1896-1948, the number of 

outliers per year decreased significantly for all three element types (Figure 10a-c).  One 

relevant point is that the outliers were not assessed in chronological order but in inverse 

order of their Q values so that the assessor was continually skipping around in time; thus 

the trend in Fig. 10 is not caused by a change in the experience of the assessor with time.  

The relative proportion of outliers assessed as valid/invalid, i.e., the effectiveness of the 

Q test and validation process, did not change over this period.  The density of stations 

available more than doubled over this period, which may affect the accuracy of the grid 

used in the objective application of the Q test.  For the manual assessment, the higher 

density of stations provides more pieces of data for the validator to identify an outlier as 

valid, which, if all else were equal, should change the effectiveness of the Q test and 

validation process as a whole..  That the effectiveness did not change suggests that there 

were both more outliers and more invalid values in the early portion of the record. 

 The distribution of the manually assessed outliers over the year is relatively 

constant for Tmax (Figure 11a), while for Tmin more outliers were flagged in the summer 

than in the winter.  For both Tmax and Tmin, a small number of days include a large 

number of outliers (spikes in Figs. 11a and 11b).  When manually assessed, these outliers 

are generally found to be other than invalid, and are probably related to unique situations 

found with frontal passages.  For precipitation (Figure 11c), the distribution of the 

manually assessed outliers shows a large peak in the summer in the total number of 

outliers, as well as the number of outliers manually assessed as plausible and 
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questionable.  The number of outliers assessed as valid or invalid was highest in the 

winter.  The greater total number of outliers for precipitation in the summer is related to 

the greater spatial variability of precipitation from convective storms, which also 

contributes to greater difficulty in the manual assessment of outliers as either obviously 

valid or invalid. 

c. Keying Errors in Validated Values 

A set of 108 outliers were verified with the microfiche of the original documents 

to check the rate of keying errors within the outliers.  At the same time, an additional 324 

values on adjoining days were also verified.  Of the 31 maximum temperature outliers 

verified, two (6%) were found to have been keying errors; of the 77 minimum 

temperature outliers verified, five (6%) were found to have been keying errors.  Of the 

139 other maximum temperature values verified, one (less than 1%) was found to have 

been a keying error; of the 185 other minimum temperatures verified, two (1%) were 

found to have been keying errors.  Given the small sample verified here, the 95% 

confidence limits on the keying error rate in the outliers is approximately 1-11%, and the 

rate in the adjoining values is 0-2%.  The magnitudes of the keying errors in flagged 

values were relatively high, generally 5.6°C (10°F) or 11.1°C (20°F), while the 

magnitudes of the errors in the adjoining values were smaller, 5.6°C (10°F) or less.  That 

the keying error rate is a relatively small proportion of the outliers (<11% at the 95% 

level of confidence) suggests that the primary explanation for invalid outlier values is 

from other sources, e.g., observer error. 

d. Consistency of Validations among Assessors 
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 The consistency of the assignment of the validation flags to the outliers during the 

validation process was checked by a blind test for both temperature and precipitation.  

Two assessors were given the same set of 100 randomly-selected outliers within a much 

larger batch, so that they were not aware of which outliers were being used for the check.  

The distribution of validation flags assigned by the two assessors is shown in Table 3.  

For temperature, 73 of the 100 outliers were given exactly the same flag, and an 

additional 23 were different by one category.  Of the outliers with the greatest category 

difference in flags assigned, most were associated either with stations with AM-observing 

times or with stations with PM-observing times where there was some question on the 

timing of a frontal passage.  For precipitation, 50 of the 100 outliers were given exactly 

the same flag, and an additional 42 were different by one category.    This consistency 

check suggests that, on average, the validation flags on the temperature outliers may be 

different by at least one category 27% of the time, and different by two or more 

categories 4% of the time; the validation flags on the precipitation outliers may be 

different by at least one category 50% of the time, and different by two or more 

categories 8% of the time.  These differences among assessors are a result of both the 

subjective nature of the validation process and the experience of the assessors built up 

over the course of this project.  In an attempt to facilitate the validation process, and to 

minimize these gross differences, a general list of guidelines was drawn up and 

distributed to each assessor.  This list provided insightful clues as well as tips and hints 

from the experience of other assessors.  Other informal comparisons of consistency 

among the assessors suggests that the greatest consistency may be produced among 

assessors located in the same physical office, such that they may continue to “train” each 
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other informally as they discuss which flag to assign to outliers in curious or unusual 

climatic situations. 

e. Validations and Extreme Values 

 The general effect of the QC process on extreme values was examined for daily 

values exceeding the threshold of a return period of 0.5 year (or an average of 2 events 

per year).  For temperature, there were 884 long-term stations to which the Q test was 

applied for the period 1896-1948, resulting in 100,000 extreme temperature values each 

for Tmax and Tmin (extreme highs for the maximum temperature, extreme lows for the 

minimum temperature).  Of these 200,000 extreme temperature values, only 323 (0.2%) 

were flagged as outliers.  By comparison, in the entire data set of long-term stations, 

0.03% of the values were flagged as outliers.  Of the 323 outliers that were also extreme 

values, over 70% were assessed as invalid by the assessors (see Table 4).  This rate of 

invalid values is somewhat higher than for all outliers.  Therefore, for the definition of 

extreme values used here, while the vast majority of the extreme values passed the 

automated QC, the extreme values were more likely to be flagged as outliers and also 

somewhat more likely to be assessed as invalid. 

For precipitation, there were 1044 long-term stations to which the nearest-

neighbor test was applied for the period 1896-1948, resulting in just over 110,000 

extreme precipitation values for the return rate of two days per year.  The great majority 

(96%) of these extreme values passed the objective nearest-neighbor test, with 4091 (4%) 

of these extreme values flagged as outliers.  Of these 4091 outliers that were also extreme 

values, a smaller proportion of them (4%) were assessed as valid as compared to all 

assessed precipitation outliers (8%) (see Table 4). 
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6. General Conclusions 

 The newly keyed pre-1948 data represents a major enhancement to the COOP 

data set, which is widely used for analysis of climate variability and change.  The quality 

control applied in this project increases its value by eliminating a sizeable number of 

errors in individual values.  A total of 10671 temperature and precipitation values (or 

48% of the 22462 outliers) were assessed to be invalid.  Analysis of the effectiveness of 

the objective spatial test, developed to identify values with the greatest potential for error, 

suggests that many of these invalid temperature outliers were in error of magnitude 20 

degrees or more. 

 Invariably, QC efforts are constrained by resources and this project was no 

exception.  A set of metrics was defined by trial and error and used to select the “worst” 

outliers for the resource-intensive manual assessment.  In this case, “worst” meant values 

that were either climatologically highly unusual or not spatially consistent with 

neighboring stations.  These metrics were used to rank values and manual assessment 

proceeded according to the ranks. 

 This was a team effort involving experts from several institutions.  Corporately, 

the team included a high level of expertise on all major climate regimes of the U.S.  The 

project was accomplished via spatially-distributed participation with all tools and data 

located on a single web site.  In addition, written guidelines (Appendix) were developed 

to assist the assessors.  These steps insured that all participants followed the same ground 

rules and allowed everyone access, if needed, to the results of the assessments of all other 

participants.  Early in the project, this promoted a rapid consensus-building on the ground 



 25

rules of the manual assessment.  As the project progressed, this allowed for ongoing 

tracking of progress and balancing of the workload among groups.  This approach was a 

key to the project’s timely completion and could serve as a model for other QC efforts. 

 The results for temperature outliers from the spatial tests indicate that further 

manual assessment of values with higher Q would likely result in a substantial number of 

additional invalid values.  Further manual assessment of values with higher Q would also 

increase the effectiveness of the Q test at capturing outliers with the greatest potential 

magnitude errors. 

 For temperature, the effectiveness of the spatial tests using the Q test could be 

improved by more accurate representation of the annual cycle beyond the use of the 

climatological monthly mean.  It could also be improved by the use of a more refined 

gridding scheme that provided higher correlations between the actual daily value and the 

grid estimate, especially in the mountainous regions of the west. 

The manual assessment of the outliers was undertaken to avoid automatically 

removing valid values from the dataset.  In general, the outliers assessed as invalid are 

most likely so, although since the manual assessment was by its nature subjective and 

prone to a certain level of human inconsistency or error, as shown by the comparison 

between assessors, a small fraction of them may be valid. 

This dataset is available from NCDC.  All values are assigned one of the flags 

described in Section 4d.  No value was actually removed from the dataset, including any 

flagged as invalid.  Thus, future users of this dataset are able to perform their own 

assessments, if desired.  However, because of the conservative nature of the assessment 
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performed here, it is recommended that for standard applications users assign a value of 

“missing” to any flagged as invalid and perhaps to those flagged as questionable. 
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Appendix 

 

DSI-3206 Validation Guidelines 

 

1. Is the station an AM or PM observing site? 

2. Does the temperature pattern map reflect mostly AM or PM stations? 

3. Are there any stations with the same observation time and if so, do their data support 

the measurement in question? 

a. Do the measurement values agree? 

b. Are the deviations relative to the monthly mean comparable? 

c. Are the standardized anomalies relative to the monthly mean comparable? 

4. Are there significant elevation differences that may justify the outlier value? 

5.  Is it conceivable that unrecorded physical phenomena, such as a downburst, an 

inversion, or convection influenced the local environment?  Is there evidence of 

precipitation during the period that might signal evaporational cooling?   Have possible 

local mesoscale effects, including sea and lake breezes, downslope warming, and strong 

radiational cooling over a deep snowpack, been considered? 

6. Is there any observable pattern in the time series plot (such as a large number of 

missing values or a step discontinuity) that may indicate a problem with the thermometer 

or a change in the instrumentation used at the station? 

7. Enter a comment justifying the validation, e.g., the observer may have reversed the 

digits and the value should likely be XY instead of YX 
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8.  Choose the validation flag that best describes the situation: 

V: The data meshes with surrounding values, is attributable to reasonable physical 

phenomena, or is consistent with the station’s climatology. 

P: There is less confidence that the datum is valid, but the value is still physically 

possible. 

Q: There is little confidence that the datum is valid, but it is not physically 

impossible, given the available information. 

I: The datum is physically impossible and is completely inconsistent with the 

surrounding stations. 

Occasionally, assessors used additional information to put the observation in context, 

such as NCDC’s Daily Weather Map Series, topographic maps of the region, various 

time series of station data, and station location and siting information (e.g., if the station 

located along a river bank, in a forest, or near a highly urbanized setting).  
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Figure Captions 

 
Figure 1.  Time series of the number of stations in the combination of DSI-3200 and DSI-

3205 compared to DSI-3206 for the period 1890-2000 for temperature. 

Figure 2.  Time series of the number of stations in the combination of DSI-3200 and DSI-

3205 compared to DSI-3206 for the period 1890-2000 for precipitation. 

Figure 3.  Map of the location of long-term stations (less than 10% missing data for the 

period 1895-2000) for a) DSI-3200 and DSI-3205 and b) additional stations including 

DSI-3206. 

 Figure 4.  Cumulative frequency (expressed as a fraction) of difference between station 

temperature anomalies and estimated temperature anomalies from the gridded data for 

Grand Marais, Michigan in December.  The light lines show the temperature 

difference values at cumulative frequencies of 0.01 and 0.99. 

Figure 5.  Q versus error distribution for the daily maximum temperature values for the 

station at Urbana, Illinois.  The random errors uniformly distributed over the range 

from -16.7°C (-30°F) to +16.7°C (+30°F), and were applied to each daily maximum 

temperature within the period 1896-1948.  For each error value, Q was calculated 

using the original climatology of the station.   Q ranges from 0 to infinity with lower 

values being more extreme.  For this project, all outliers with Q less than or equal to 

0.34 (horizontal line) were manually validated. 

Figure 6.  The percentage of manual outlier assessments in each category (valid, 

plausible, questionable, and invalid) as a function of the standardized deviation for 

temperature outliers.  The total number of outliers in each standard deviation bin is 

shown at the top of the bar. 
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Figure 7.  The percentage of manual outlier assessments in each category (valid, 

plausible, questionable, and invalid) as a function of amount for precipitation outliers.  

The total number of outliers in each precipitation bin is shown at the top of the bar. 

Figure 8.  The percentage of manual outlier assessments in each category (valid, 

plausible, questionable, and invalid) as a function of Q for temperature outliers.  The 

total number of outliers in each Q bin is shown at the top of the bar. 

Figure 9.  The percentage of manual outlier assessments in each category (valid, 

plausible, questionable, and invalid) as a function of Q for precipitation outliers.  The 

total number of outliers in each Q bin is shown at the top of the bar. 

Figure 10.  The number of manually assessed outliers by year for each element type, 

including the number of each of the four validation codes assigned to the outliers by 

the assessors. 

Figure 11.  The number of manually assessed outliers by day of the year for each element 

type, including the number of each of the four validation codes assigned to the 

outliers by the assessors. 
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Table Captions 

Table 1.  Size of overlap in digitized data between TD3206 and TD3200/TD3205 and the 

rate of discrepancies within the overlapping data.  The rates are given for the 

Midwest and for the rest of the country.  The Midwest includes the nine states of 

Illinois, Indiana, Iowa, Kentucky, Minnesota, Michigan, Missouri, Ohio, 

Wisconsin, and also New Mexico, which was included in TD3205. 

Table 2.  Distribution of outliers from Q tests and assessments by climate region. 

Table 3.  Comparison of validation codes assigned by two assessors to the same set of 

100 temperature outliers and 100 precipitation outliers.  The 100 sample outliers 

of each type were randomly selected out of a much larger set, and were not 

marked so that the assessors were not aware of which outliers were being 

compared.  The validation codes are:  V=valid, P=plausible, Q=questionable, and 

I=invalid. 

Table 4.  Distribution in percent of the validation codes assigned to the assessed outliers 

for each of the three element types, precipitation, maximum and minimum 

temperature, for all outliers validated and for 2-days-per-year extreme values that 

are also outliers. 
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Table 1.  Size of overlap in digitized data between TD3206 and TD3200/TD3205 and the 

rate of discrepancies within the overlapping data.  The rates are given for the Midwest 

and for the rest of the country.  The Midwest includes the nine states of Illinois, Indiana, 

Iowa, Kentucky, Minnesota, Michigan, Missouri, Ohio, Wisconsin, and also New 

Mexico, which was included in TD3205. 

 

 Number of Discrepancies 

Element Overlapping Values Percent Overlap in Overlap 

 

 Rest of Rest of Rest of 

 Midwest Country Midwest Country Midwest Country 

Max Temp 5,556,000 791,000 54.3% 2.6% 8.1% 6.8% 

Min Temp 5,554,000 791,000 54.2% 2.6% 2.0% 2.2% 

Precipitation 10,238,000 868,000 69.5% 2.0% 0.9% 0.8% 
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Table 2.  Distribution of outliers from Q tests and assessments by climate region. 

Maximum Temperature 
        
  Number of Percent of     
 Region Outliers Tested Values Valid Plausible Questionable Invalid 
        
1 Northeast 363 0.031% 8% 7% 10% 75% 
2 East North Central 1360 0.042% 14% 7% 12% 68% 
3 Central 957 0.031% 16% 10% 10% 64% 
4 Southeast 358 0.023% 12% 11% 9% 68% 
5 West North Central 547 0.030% 7% 9% 13% 71% 
6 South 724 0.037% 11% 12% 12% 65% 
7 Southwest 201 0.026% 9% 9% 13% 69% 
8 Northwest 194 0.026% 2% 7% 14% 77% 
9 West 110 0.022% 6% 14% 9% 71% 
        
        
        

Minimum Temperature 
        
  Number of Percent of     
 Region Outliers Tested Values Valid Plausible Questionable Invalid 
        
1 Northeast 334 0.028% 4% 7% 10% 78% 
2 East North Central 1033 0.032% 7% 3% 9% 81% 
3 Central 795 0.026% 6% 5% 10% 79% 
4 Southeast 657 0.043% 9% 8% 12% 70% 
5 West North Central 463 0.026% 4% 6% 12% 79% 
6 South 595 0.030% 4% 8% 16% 72% 
7 Southwest 123 0.016% 6% 5% 7% 82% 
8 Northwest 140 0.019% 4% 6% 8% 82% 
9 West 84 0.017% 5% 7% 20% 68% 
        
        
        

Precipitation 
        
  Number of Percent of     
 Region Outliers Tested Values Valid Plausible Questionable Invalid 
        
1 Northeast 635 0.16% 4% 35% 36% 25% 
2 East North Central 1309 0.16% 10% 28% 27% 34% 
3 Central 1640 0.18% 9% 42% 27% 23% 
4 Southeast 1560 0.35% 7% 40% 36% 17% 
5 West North Central 1037 0.28% 6% 36% 35% 23% 
6 South 1713 0.39% 9% 42% 38% 10% 
7 Southwest 531 0.45% 2% 49% 30% 18% 
8 Northwest 312 0.14% 5% 40% 30% 25% 
9 West 246 0.33% 9% 28% 33% 30% 
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Table 3.  Comparison of validation codes assigned by two assessors to the same set of 

100 temperature outliers and 100 precipitation outliers.  The 100 sample outliers of each 

type were randomly selected out of a much larger set, and were not marked so that the 

assessors were not aware of which outliers were being compared.  The validation codes 

are:  V=valid, P=plausible, Q=questionable, and I=invalid. 

 

 

Temperature Comparison 

  

 
Validator A 

 
  V P Q I 

V 1     1   

P 2 1 1   

Q  3 3 8 V
al

id
at

or
 B

 

I 1 2 9 68 

 

Precipitation Comparison 

  

 
Validator A 

 
  V P Q I 

V         

P 5 25 16   

Q 4 9 17 3 

V
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at

or
 B

 

I 2 2 9 8 
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Table 4.  Distribution in percent of the validation codes assigned to the assessed outliers 

for each of the three element types, precipitation, maximum and minimum temperature, 

for all outliers validated and for 2-days-per-year extreme values that are also outliers. 

 

 Precipitation Max Temperature Min Temperature 

Code All Extremes All Extremes All Extremes 

V 8% 4% 17% 6% 14% 5% 

P 39 42 11 9 7 8 

Q 33 34 11 12 9 10 

I 20 20 61 73 70 77 

Count 8982 4091 6415 156 7065 129 
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Figure1.  Time series of the number of stations in the combination of DSI-3200 and DSI-3205 

compared to DSI-3206 for the period 1890-2000 for temperature. 
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Figure 2.  Time series of the number of stations in the combination of DSI-3200 and DSI-3205 

compared to DSI-3206 for the period 1890-2000 for precipitation.



Figure 3.  Map of the location of long-term stations 

(less than 10% missing data for the period 1895-

2000) for a) DSI-3200 and DSI-3205 and b) 

additional stations including DSI-3206.

39
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Figure 4.  Cumulative frequency (expressed as a fraction) of difference between station 

temperature anomalies and estimated temperature anomalies from the gridded data for Grand 
Marais, Michigan in December.  The light lines show the temperature difference values at 
cumulative frequencies of 0.01 and 0.99. 
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Figure 5. Q versus error distribution for the daily maximum temperature values for the station at 

Urbana, Illinois.  The random errors uniformly distributed over the range from -16.7°C (-
30°F) to +16.7°C (+30°F), and were applied to each daily maximum temperature within the 
period 1896-1948.  For each error value, Q was calculated using the original climatology of 
the station.   Q ranges from 0 to infinity with lower values being more extreme.  For this 
project, all outliers with Q less than or equal to 0.34 (horizontal line) were manually 
validated.
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Figure 6.  The percentage of manual outlier assessments in each category (valid, plausible, 

questionable, and invalid) as a function of the standardized deviation for temperature outliers.  
The total number of outliers in each standard deviation bin is shown at the top of the bar. 
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Figure 7.  The percentage of manual outlier assessments in each category (valid, plausible, 

questionable, and invalid) as a function of amount for precipitation outliers.  The total 
number of outliers in each precipitation bin is shown at the top of the bar. 
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Figure 8.  The percentage of manual outlier assessments in each category (valid, plausible, 

questionable, and invalid) as a function of Q for temperature outliers.  The total number of 
outliers in each Q bin is shown at the top of the bar. 
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Figure 9.  The percentage of manual outlier assessments in each category (valid, plausible, 

questionable, and invalid) as a function of Q for precipitation outliers.  The total number of 
outliers in each Q bin is shown at the top of the bar. 
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Figure 10.  The number of manually assessed outliers by year for each element type, including 

the number of each of the four validation codes assigned to the outliers by the assessors. 
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Figure 11.  The number of manually assessed outliers by day of the year for each element type, 
including the number of each of the four validation codes assigned to the outliers by the 
assessors. 


