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ABSTRACT

This paper describes an improved edition of the climate division dataset for the conterminousUnited States

(i.e., version 2). The first improvement is to the input data, which now include additional station networks,

quality assurance reviews, and temperature bias adjustments. The second improvement is to the suite of

climatic elements, which now includes both maximum and minimum temperatures. The third improvement is

to the computational approach, which now employs climatologically aided interpolation to address topo-

graphic and network variability. Version 2 exhibits substantial differences from version 1 over the period

1895–2012. For example, divisional averages in version 2 tend to be cooler and wetter, particularly in

mountainous areas of the western United States. Division-level trends in temperature and precipitation

display greater spatial consistency in version 2. National-scale temperature trends in version 2 are comparable

to those in the U.S. Historical Climatology Network whereas version 1 exhibits less warming as a result of

historical changes in observing practices. Divisional errors in version 2 are likely less than 0.58C for tem-

perature and 20mm for precipitation at the start of the record, falling rapidly thereafter. Overall, these results

indicate that version 2 can supersede version 1 in both operational climate monitoring and applied climatic

research.

1. Introduction

The National Oceanic and Atmospheric Administra-

tion/National Climatic Data Center (NOAA/NCDC)

issues State of the Climate reports on a monthly basis.

These reports summarize recent conditions and long-

term trends at a variety of spatial scales, the smallest

being the climate division level. For reporting purposes,

the conterminous United States is divided into 344 di-

visions (Fig. 1), the boundaries of which reflect multiple

considerations (e.g., climatic conditions, county lines,

crop districts, drainage basins) rather than strict climatic

homogeneity (Guttman and Quayle 1996). The histori-

cal record for each division consists of temperature and

precipitation averages for each month from 1895 to the

present. Derived quantities such as degree days and

drought indices are also available.

The divisional dataset has two primary strengths that

have led to its widespread application in climatological

research. First, its long-term, serially complete record

and its relatively modest size facilitate the rapid cal-

culation of state, regional, and national averages for

individual events, which can then be placed into a century-

scale perspective. Second, its spatial coherence makes it

useful in tracking large-scale features over extended pe-

riods; major events such as the extreme droughts of the

1930s and the cold winters of the 1970s, for example, are

easy to discern. Consistent with these strengths, the di-

visional dataset has been extensively employed in climate

change research (e.g., Grundstein 2009; Hidalgo et al.

2009; Casola et al. 2009; Miller and Piechota 2008; Rogers

et al. 2007), drought assessments (e.g., Myoung and

Nielsen-Gammon 2010; Plank and Shuman 2009; Seager

et al. 2009; Quiring 2009; Goodrich 2007), precipitation

studies (e.g., Anderson et al. 2010; Quiring and Kluver

2009;Goodrich andEllis 2008;Grantz et al. 2007;McCabe

et al. 2007), and other varied applications (e.g., Mauget

et al. 2009; Stahle et al. 2009; Livezey et al. 2007; Preisler

and Westerling 2007).

The divisional dataset also has four major weaknesses

that render it suboptimal for certain applications, in-

cluding, to some extent, the estimation of spatial means
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and temporal trends. First, each divisional value from

1931 to the present is just the arithmetic average of the

station data within it, a computational practice that re-

sults in a bias when a division is spatially undersampled

in amonth (e.g., because some stations did not report) or

is climatologically inhomogeneous in general (e.g., due

to large variations in topography). Second, all divisional

values before 1931 stem from state averages published

by the U.S. Department of Agriculture (USDA) rather

than from actual station observations, producing an ar-

tificial discontinuity in both the mean and variance for

1895 to 1930 relative to 1931 to the present (Guttman

and Quayle 1996). Third, many divisions experienced a

systematic change in average station location and ele-

vation during the twentieth century, resulting in spuri-

ous historical trends in some regions (Keim et al. 2003;

Keim et al. 2005; Allard et al. 2009). Finally, none of the

station-based temperature records contain adjustments

for historical changes in observation time, station loca-

tion, or temperature instrumentation—inhomogeneities

that further bias temporal trends (Peterson et al. 1998).

This paper describes the construction of an improved

divisional dataset addressing these weaknesses. The first

improvement is to the input data, which now include

additional station records and contemporary bias ad-

justments (Menne and Williams 2009). The second im-

provement is to the suite of climatic elements, which has

been expanded to include both maximum and minimum

temperatures. The final (and most extensive) improve-

ment is to the computational methodology, which now

addresses topographic and network variability via clima-

tologically aided interpolation (Willmott and Robeson

1995). The outcome of these improvements is a new da-

taset, hereafter termed version 2, which maintains the

strengths of its predecessor while providing more robust

estimates of areal averages and long-term trends.

2. Station data

The Global Historical Climatology Network-Daily

(GHCN-Daily) dataset (Menne et al. 2012) is the

source of station data for version 2. GHCN-Daily con-

tains several major observing networks in North

America, six of which are used here. The primary net-

works include the Cooperative Observer (COOP) pro-

gram and the Automated Surface Observing System

(ASOS). Notably, the COOP and ASOS networks were

the only source of data used in the original divisional

dataset. To improve coverage in western states and

along international borders, version 2 also includes the

National Interagency Fire Center (NIFC) Remote Au-

tomatic Weather Station (RAWS) network, the USDA

Snow Telemetry (SNOTEL) network, the Environment

Canada (EC) network (south of 528N), and part of

Mexico’s Servicio Meteorologico Nacional (SMN) net-

work (north of 248N). Note that version 2 does not use

RAWSprecipitation data because that network’s tipping-

bucket gauges are unheated, leading to suspect cold-

weather data.

All GHCN-Daily stations are routinely processed

through a suite of logical, serial, and spatial quality as-

surance reviews (Durre et al. 2010) to identify erroneous

observations. For version 2, all such data were set to

missing before computing monthly values, which in turn

were subjected to additional serial and spatial checks

to eliminate residual outliers (Lawrimore et al. 2011).

Overall, these checks deemed less than 0.25% of the

monthly data as being erroneous. Stations having at

least 10 years of valid monthly data since 1950 were used

in version 2. These criteria resulted in the exclusion of

only a modest number of long-term (.50yr) COOP sites

in the first half of the twentieth century, that is, about

250 for temperature and 375 for precipitation.

GHCN-Daily temperature records do not contain

adjustments for historical changes in observing practice.

Consequently, bias adjustments were computed specif-

ically for version 2 to account for changes in observation

time, station location, temperature instrumentation, and

siting conditions. The first step in this process entailed

using the method of Karl et al. (1986) to address docu-

mented changes in observation time at COOP stations

and to adjust the records to a midnight local standard

time (LST) observation schedule (matching ASOS,

RAWS, and SNOTEL). COOP station histories were

obtained from theNCDCHistorical ObservingMetadata

Repository (HOMR) and the U.S. Historical Climatol-

ogy Network (HCN; Menne et al. 2009). The second step

in the adjustment process involved using the ‘‘pairwise’’

method of Menne and Williams (2009) to address all

other documented and undocumented changes at any

FIG. 1. Map of the 344 climate divisions in the conterminous

United States. Divisions highlighted in gray are discussed in the

paper.
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station in any network. For example, the pairwise ap-

proach was applied to account for documented changes

in station location and temperature instrumentation at

COOP and ASOS stations, again using HOMR and

HCN for station history information. Likewise, the

pairwise approach was used to address undocumented

changes in observation time, station location, and tem-

perature instrumentation across all networks, including

COOP and ASOS. Because the pairwise method largely

accounts for local, unrepresentative trends that arise

from changes in siting conditions (Menne et al. 2010;

Hausfather et al. 2013), version 2 contains no separate

adjustment in that regard.

Figure 2 depicts the final station network, which

consists of 10 325 temperature and 14 702 precipitation

stations. Except for northern Maine, station coverage is

fairly uniform east of the RockyMountains. Coverage is

more variable in the West (i.e., from the Pacific coast to

the Rocky Mountains), with large gaps in Nevada. In

general, there is a decline in station density going back in

time; the losses are proportionately larger in the West,

but not to an extreme degree. For instance, about a third

of all precipitation stations are located in theWest in the

early twenty-first century, with the proportion falling to

about a fifth by the late nineteenth century.

Figure 3 depicts the temporal evolution of the station

network. For temperature, the network increases in size

until the mid-1960s, declines slightly over the next two

decades, increases abruptly again in the late 1980s (due

to the growth of RAWS), and declines modestly in the

last decade. For precipitation, the network increases in

size until the late 1950s, declines gradually through the

late 1990s and then more rapidly thereafter. There is

a slight change in slope around 1948 for all elements

attributable to the creation of the NCDC digital archive.

From a monitoring perspective, data are usually avail-

able for at least 4000 stations in near–real time (i.e., for

the previous month), increasing to roughly 5000 stations

after a 2-month lag.

3. Gridding method

Climate division values in version 2 were derived from

area-weighted averages of gridpoint estimates inter-

polated from station data. A nominal latitude–longitude

spacing of 5 km was used to ensure that all divisions had

sufficient gridpoint representation (only four small di-

visions had fewer than 100 points) and because the impact

of elevation on precipitation is minimal below a spatial

resolution of 5 km (Sharples et al. 2005). Station data

were gridded via climatologically aided interpolation to

FIG. 2. Maps of stations used in the construction of version 2: (top)

temperature and (bottom) precipitation.

FIG. 3. Plot of the number of temperature and precipitation stations

through time.
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minimize biases resulting from topographic and net-

work variability (Willmott and Robeson 1995; Hamlet

and Lettenmaier 2005). In brief, this approach typically

requires the creation of three grid types: first-guess

grids of climate normals by month, anomaly grids (i.e.,

departures from normal) for each year and month, and

composite normal–anomaly grids for each year and

month. The normal grids capture finescale detail using

all stations whereas the anomaly grids capture broad

departures from average using only the sites available

at that time. Because anomalies generally exhibit less

spatial variability than the mean field, the approach is

usually viable for sparse networks (New et al. 2000),

though some local features (e.g., inversions) may not be

resolved if they do not occur on a climatological basis

(Daly 2006).

The remainder of this section presents the gridding

approach in detail, the discussion consisting of three

topics. The first section describes the computation of

station-based climate normals, which were required for

the creation of both the normal and anomaly grids. The

next section introduces the thin-plate smoothing spline

method, which was employed in generating the normal

grids. The third section details the preparation of the

composite grids, emphasizing the computation and in-

terpolation of station anomalies via inverse-distance

weighting.

a. Climate normals

The first step involved the computation of climate

normals for each station, month, and element. Normals

were computed using a base period of 1981–2010 to

maximize the number of stations from the RAWS and

SNOTEL networks, which expanded markedly during

the period. If a station had a complete record in the base

period, then the normals were simply averages of the 30

monthly values. If a station had an incomplete record in

the base period, then estimates were generated for all

missing months before computing the normals (to min-

imize the bias caused by excluding an unusually cold or

dry year). If a station was missing more than two-thirds

of its record in the base period, then two steps were

employed to compute the normals: first, averages were

calculated for a previous 30-yr span (e.g., 1971–2000)

and, second, neighbor-based adjustments were applied

to those averages, producing normals consistent with the

1981–2010 base period.

Most stations required estimates for missing values,

with 25% of all sites lacking half of their base-period

data. Estimates for missing values were created using

least absolute deviation regression (Mielke and Berry

2001). For each regression model, the dependent vari-

able was the time series at the target station, and the

independent variables were the series from up to five

neighboring stations that were climatologically similar

to the target. Similarity was quantified using the index of

agreement d to capture both additive and proportional

differences between series (Legates and McCabe 1999).

Neighbors were included in a stepwise fashion until

reaching a maximum of five or a decline in performance

(i.e., a decrease in the d between the target and the

model-predicted series). Each station and month had

a unique regression model, and in computing a normal,

each missing value estimate had the same weight as each

observed value (i.e., 1/30).

One-quarter of all sites lacked sufficient base-period

data for the direct computation of normals. In such

cases, normals were obtained by finding a previous 30-yr

span with sufficient data, filling in missing values, com-

puting averages by month, and then adjusting the aver-

ages to approximate 1981–2010. Six previous periods

were considered (1976–2005, 1971–2000, 1966–95, 1961–

90, 1956–85, and 1951–80), with about 4% of the sites

falling into each period. The last step (i.e., the adjust-

ment process) was performed separately by month and

used up to five neighboring stations to estimate clima-

tological differences between the periods. Similarity was

again quantified using d, with the added constraint that

each neighbor had both a base-period normal and an

average for the same time as the target. An adjustment

factor was calculated for each neighbor; for tempera-

ture, this factor was the base-period normal minus the

average from the earlier period, and for precipitation,

this factor was the base-period normal divided by the

average. The neighbor-based adjustments factors were

then composited, with each site receiving a weight pro-

portional to its d value. Finally, the composite adjust-

ment was applied to the target’s average, producing

a normal consistent with the base period.

b. Normal grids

Climatologically aided interpolation requires the cre-

ation of three grid types, the first being grids of station-

based climate normals for each element and month.

These ‘‘normal’’ grids were produced using the thin-plate

smoothing spline method (Hutchinson 1995). As noted

by Daly (2006), this method is well suited for a large

domain such as the United States because the relation-

ship between the dependent variable (e.g., temperature)

and the predictor variables (e.g., elevation) can vary in

space, facilitating the reconstruction of complex geo-

graphical patterns (e.g., Hijmans et al. 2005; Rehfeldt

2006). Notably, the approach generates a continuous

surface rather than an exact interpolation through the

data, reducing the chance that measurement error (e.g.,

from poor siting) leads to unrealistic spatial gradients.
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The method itself is formally implemented in a software

package called theAustralian National University Splines

(ANUSPLIN) package, which has become a leading

technology for interpolation (McKenney et al. 2011). The

basic elements of this implementation are described here;

for further details, see Wahba (1990) and Hutchinson

(2004).

The objective of the thin-plate smoothing spline

method is to estimate an approximate function g(xi, yi)

that matches the data values as closely as possible while

also being as smooth as possible. This is accomplished by

minimizing

1

n
�
n

i51

[(zi 2 g(xi, yi)]
2 1lJm(g) ,

where zi is the value of the dependent variable at station

i (e.g., its normal temperature in July), xi and yi denote

the location of station i (e.g., its latitude and longitude),

the summation term is the mean-square error; l is a

smoothing parameter, Jm(g) is a penalty function that

quantifies surface roughness with high-order partial

derivatives, andm is the order of the spline (m5 3 in this

study, meaning a cubic spline). The smoothing param-

eter l balances the influence of the mean-square error

and the roughness penalty; a smaller l results in a lesser

cost for roughness and thus a tighter fit through the data

(i.e., a more variable surface).

The smoothing parameter is usually obtained by min-

imizing the generalized cross validation (GCV), a mea-

sure of predictive skill for the fitted surface. In essence,

GCV is computed by removing a point, fitting a surface

through the remaining points, estimating the value at the

location of the withheld point, calculating the squared

residual for that location, and then repeating the process

for all other points (the GCV being the average of the

residuals). To account for short-range correlation be-

tween the values, the GCV is often minimized for a

subset of more evenly spaced stations (knots) rather

than the full network (Bates and Wahba 1982). In this

approach, all stations influence the shape of the sur-

face, but the GCV itself is only based on stations that

were selected as knots. The present investigation used

75% of the stations as knots (as in Sharples et al. 2005),

and to increase computational efficiency, the conter-

minous United States was divided into three tiles that

overlapped by 58 of longitude (i.e., 1308–1008W, 1058–
858W, and 908–658W). Surfaces were fit separately to

each tile and then merged, the weight of each tile being

a linear function of the distance between a particular

location and the edge of that tile.

All climate normals were modeled as a smooth func-

tion of latitude, longitude, and elevation because those

locational attributes explain much of the spatial vari-

ation in climate. Coordinates were scaled in decimal

degrees while elevation was scaled in kilometers, ef-

fectively exaggerating its influence by a factor of 100

for consistency with the generally accepted horizontal

and vertical distance scales of atmospheric dynamics

(Sharples et al. 2005; Daley 1991). To supplement the

coordinates and elevation, additional locational pre-

dictors were included for individual elements to improve

skill in areas where thin-plate splines can have difficulty in

simulating abrupt transitions (Daly 2006). In particular,

a metric of coastal influence was included to model the

damping effect of large water bodies on maximum and

minimum temperatures. Likewise, a secondary metric of

elevation was included to model the influence of atmo-

spheric inversions on minimum temperature. Finally,

metrics of slope and aspect were included to enhance the

identification of windward and leeward exposures and

their impact on precipitation. For a detailed description of

these additional predictors, see the appendix.

The thin-plate smoothing spline method produces a

spatially continuous surface of the dependent variable.

As a result, it can be resolved to any desired grid by

supplying an appropriate lattice of the predictor vari-

ables, usually in the form of a digital elevation model

(DEM). The present application employed the Global

30 arc-s elevation dataset (GTOPO30) DEM (USGS

2013) in that regard, resampling from its native 1-km

resolution to a nominal latitude–longitude spacing of

5 km using a focal median technique (i.e., by finding the

median within a search radius of four grid cells).

c. Composite grids

Climatologically aided interpolation requires the de-

velopment of three grid types for each climatic element.

The previous section described the preparation of the

first type, that is, normal grids, which are designed to

capture finescale topographic detail using all stations.

This section describes the creation of the remaining grid

types (i.e., anomaly and composite grids), which are

designed to capture interannual variability using only

those stations available during each year and month.

The process itself consisted of three steps: computing

anomalies from climate normals for each station, year,

and month; creating anomaly grids via inverse-distance

weighting; and merging the normal and anomaly grids

into a composite field for each year and month.

Anomalies were employed in the gridding process to

account for large gradients arising from differences in

station elevation and location. For temperature, the

anomaly for a given year and month was computed by

subtracting a station’s climate normal for the calendar

month from the station’s actual temperature in that year
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and month. For precipitation, the anomaly for a given

year and month was computed by dividing the station’s

actual total in that year and month by the station’s

climate normal for the calendar month. On average,

anomalies exhibit less spatial variability than the origi-

nal data, facilitating interpolation with sparse station

networks (Mitchell and Jones 2005). However, anomaly

fields still contain some roughness for a variety of reasons

(e.g., station siting, coastal effects, topographic position-

ing); furthermore, increases in station density can result

in increasingly complex anomaly patterns through time,

particularly in high-elevation areas of the West. If an

anomaly deviated significantly from its neighbor-based

average, then it was smoothed to reduce its influence

during interpolation, thus reducing the chance that a di-

visional average was heavily impacted by a (presumably)

local-scale feature. Smoothing was accomplished using

the interpolation residual-based index of Lui et al. (2001);

specifically, if an index exceeded a z score of 3, then the

value used in gridding was a weighted average of the

original anomaly (20%) and the index-based predic-

tion (80%). Approximately 1% of the anomalies were

smoothed in this fashion.

Inverse-distance weighting was applied to interpolate

the anomalies onto the 5-km grid. The approach used

here was essentially that of Willmott et al. (1985), which

was employed in the original version of climatologically

aided interpolation described in Willmott and Robeson

(1995). As with all distance-based algorithms, the ap-

proach estimates a value at each grid point using a small

number (15–25) of nearby stations, their respective

weights being proportional to the distance between the

stations and the grid point. The algorithm performs in-

terpolation in spherical rather than Cartesian co-

ordinates to increase predictive skill, accounts for both

the distance and angular relationships between stations

and grid points, corrects for the directional isolation of

a station relative to its neighbors, and permits grid points

to take on values outside the range of the data via a

limited extrapolation function. In this investigation, the

distance between each station and grid point was artifi-

cially inflated by a modest 25 km (roughly five grid cells)

to prevent the algorithm from being an exact inter-

polator, further minimizing the impact of local-scale

features on gridded fields (and thus divisional averages).

Slightly smaller and larger distances were also tested,

but the resulting grids were generally comparable.

The creation of the composite grid for each year and

month differed slightly by climatic element. For maxi-

mum and minimum temperatures, the composite grid

for a given year and month was created by adding the

normal grid for the calendar month to the anomaly grid

for that year and month. Average temperature was

computed by taking themean ofmaximum andminimum

temperatures. For precipitation, the composite grid for

a given year and month was created by multiplying the

normal grid for the calendar month by the anomaly grid

for that year and month.

4. Divisional examples

Climate division values for each element were derived

from the composite grids. More specifically, the value

for each division, year, and month was computed as the

area-weighted average of the composite gridpoint values

whose centroids fell within the boundaries of that division

in that month. This approach differs substantially from

the methods used in the original divisional dataset, re-

sulting in systematic differences between the two ver-

sions, particularly for divisions with large topographic

variability. This section presents examples of climate di-

visions that had substantial differences in 2012, each case

demonstrating the benefits obtained by using climato-

logically aided interpolation.

The San Joaquin drainage division inCalifornia (Fig. 4)

illustrates the impact of elevation on average tempera-

ture at the divisional level. For example, during July 2012

the divisional value in version 1 (24.98C) is 1.58C higher

than the value in version 2 (23.48C). The version 1 value is
higher because it is an arithmetic mean of station obser-

vations, the majority of which are in the San Joaquin

Valley, which is warmer than the Sierra Nevada in the

eastern third of the division. Notably, the composite grid

depicts lower temperatures throughout the Sierras (16%

of the composite grid points have elevations above

2000m versus just one COOP station), contributing to

a lower divisional value in version 2.

The Central Coast drainage division in California

(Fig. 4) illustrates the impact of coastal effects on av-

erage temperature at the divisional level. For instance,

during July 2012 the divisional value in version 1 (18.88C)
is 1.48C lower than the value in version 2 (20.28C). The
version 1 value is lower because it is an arithmetic mean

of station observations, 61% of which are within 25km of

the coast, which is generally cooler than areas just a short

distance inland as a result of onshore flow in summer

(Daly et al. 2002). The composite grid captures this rel-

atively narrow inland penetration of marine air, particu-

larly for maximum temperature, helping explain the

higher divisional value in version 2.

The Rio Grande drainage division in Colorado

(Fig. 5) illustrates the impact of atmospheric inversions

on average temperature at the divisional level. For ex-

ample, during January 2012 the divisional value in ver-

sion 1 (26.68C) is 1.58C lower than the value in version 2

(25.18C). The version 1 value is lower because it is an
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arithmetic mean of station observations, most of which

are located in a basin that experiences cold-air drainage

(and thus very low minimums) at night. The composite

grid generally replicates the resulting inversion pattern

in minimum temperature, wherein the lowest values are

at the lowest elevations and the highest values occur

roughly at midslope, contributing to the higher divisional

value in version 2.

FIG. 4. Maps of minimum, average, and maximum temperatures during July 2012 in the San

Joaquin and Central Coast divisions of southern California. Large dots denote the locations of

ASOS and COOP stations while small dots denote the locations of RAWS and SNOTEL

stations.
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The Northeast division in Arizona (Fig. 6) illustrates

the impact of differences in methodology on the spatial

mean of precipitation. For example, during July 2012 the

divisional value in version 1 (81.3mm) is 25% wetter

than the value in version 2 (64.5mm) even though sta-

tion totals are generally consistent with the composite

gridded field. The version 1 value is higher because it is

an arithmetic mean of station totals, which, due to

FIG. 5. Maps of minimum, average, and maximum temperatures during January 2012 in the

Rio Grande drainage division of southern Colorado. Numbers denote temperatures (8C) at
individual stations (values at ASOS and COOP stations are in boldface).
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orographic effects, are higher along the Mogollon Rim

(the southern boundary of the division), where the sta-

tion density is greater. The Northeast division also il-

lustrates the suboptimal nature of version 1 from 1895 to

1930, a period when divisional values were estimated

using regression models that employed USDA state-

wide averages as predictors. For instance, in July 1895

the regression estimate of version 1 (26.4mm) is 31%

wetter than the value in version 2 (20.1mm). Ironically,

the latter is nearly identical to the arithmeticmean of the

station totals (19.5mm), which again is consistent with

the composite gridded field. Notably, both depict much

lower totals north of the Mogollon Rim in 1895 than in

2012 (as illustrated by the values near Flagstaff and

Show Low).

5. Database differences

There are several prominent differences between

version 2 and version 1 at both the divisional and the

national levels. This section explores the major differ-

ences from 1895 to 2012, focusing on long-term means

and temporal trends (computed using Kendall–Theill

robust lines; Helsel andHirsch 1991). The emphasis is on

FIG. 6. Maps of precipitation in the northeast division of Arizona during July 2012 and July

1895. Numbers represent precipitation totals (mm) at individual stations.
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large-scale differences at the annual and seasonal time

scales, with a brief mention of select divisions having

improved estimates in version 2. Temperature and pre-

cipitation are discussed separately.

a. Temperature

Figure 7 depicts the differences in average tempera-

ture at both the divisional and the national levels. From

a divisional perspective, most differences in the annual

average are less than 0.58C, particularly in the East, and

most differences in excess of 1.08C are in the West. The

latter are usually negative, indicating lower averages in

version 2. These largely result from better sampling

of cool, high-elevation areas in version 2, as exemplified

by the San Joaquin drainage division described in the

previous section. From a national perspective, the area-

weighted difference between the datasets is 20.38C,
indicating that version 2 is slightly cooler overall than

version 1. Notably, the average gridpoint elevation in

version 2 (790m) is also higher than the average elevation

of observing stations in version 1 (568m). From a tem-

poral perspective, differences generally decline until the

mid-1960s and remain fairly stable thereafter, with oc-

casional increases in isolated months (caused by dispar-

ities in large divisions where coverage in version 2 is

superior owing to RAWS and SNOTEL). From a sea-

sonal perspective, differences are marginally larger in

winter than summer, which is generally consistent with

greater variability during the cold season.

Figure 8 depicts trends in annual average temperature

at the divisional level over the period 1895–2012. Ver-

sion 2 shows warming throughout the nation except for a

relatively small area of cooling in the Southeast. Version

1 exhibits the same primary features, but the divisional

trends are often smaller, the cooling area is more exten-

sive, and the overall pattern is less consistent (e.g., the

northern division ofMaine exhibits cooling while the rest

of New England is warming). In general, most of these

trend differences are attributable to historical changes

in station location, temperature instrumentation, ob-

serving practice, and siting conditions, none of which

are addressed at the station level in version 1 (i.e., it

contains no station-specific bias adjustments for such

changes). In particular, the smaller trends and greater

FIG. 7. Comparison of average temperatures in version 2 and version 1 for the period 1895–2012. (top left) The

annual average in each division in version 2. (top right) The difference in the annual average (i.e., version 2 minus

version 1) in each division. (bottom) The monthly time series of the area-weighted average of divisional differences.
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cooling in version 1 reflect the systematic change from

afternoon to morning observing times since the 1950s

and the installation of the Maximum–Minimum Tem-

perature System since the 1980s, both of which artifi-

cially cooled the U.S. temperature record (Williams

et al. 2012; Vose et al. 2012). The lower spatial con-

sistency in version 1 reflects these network-wide events,

other changes at the local level (such as station loca-

tion), and changes in station coverage through time, all

of which are known to increase noise in trend patterns

(Menne et al. 2009). Trend differences are also appar-

ent at the state level, with Nevada and North Dakota

being obvious examples. These differences reflect the

use of the state-based regressionmodels in version 1 for

the period 1895–1930.

Table 1 shows national-scale trends over the period

1895–2012. Consistent with its lack of bias adjustments,

version 1 has smaller average temperature trends than

both version 2 andHCN, a bias-adjusted dataset that has

been used by NOAA to monitor national trends for

many years. Version 2 and HCN have nearly identical

trends for all elements at the annual time scale, with the

former exhibiting slightly more warming in winter

(;0.0158Cdecade21) and slightly less warming in sum-

mer (;0.0108Cdecade21).

b. Precipitation

Figure 9 depicts the differences in average precipi-

tation at both the divisional and the national levels.

From a divisional perspective, most differences in aver-

age annual precipitation are less than 50mm, particularly

in the East, while most differences in excess of 100mm

are in theWest. The latter are usually positive, indicating

higher totals in version 2. These largely result from better

sampling of upslope areas subject to orographic pre-

cipitation in version 2, as exemplified by the western di-

vision inMontana [an area inwhich precipitation is highly

FIG. 8. Maps of annual average temperature trends (8Cdecade21)

by division from 1895 to 2012: (top) version 2, (middle) version 1,

and (bottom) version 2 2 version 1.

TABLE 1. Area-average temperature trends (8Cdecade21) over the

conterminous United States for the period 1895–2012.

Dataset Annual Winter Summer

Avg

Version 1 0.044 0.077 0.047

Version 2 0.069 0.120 0.055

HCN 2.5 0.067 0.106 0.065

Max

Version 1 — — —

Version 2 0.066 0.119 0.035

HCN 2.5 0.064 0.098 0.050

Min

Version 1 — — —

Version 2 0.076 0.122 0.071

HCN 2.5 0.073 0.112 0.077
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correlated with elevation; Silverman et al. (2013)]. From

a national perspective, the area-weighted difference be-

tween the datasets is 20mm, indicating that version 2 is

slightly wetter overall than version 1. From a temporal

perspective, the datasets exhibit much greater similarity

starting precisely in 1931, reflecting the change in com-

putational methods in version 1 at that time. There are

otherwise no systematic changes in the national-scale

difference series through time, nor is there any obvious

seasonal signal.

Figure 10 depicts trends in annual average precipi-

tation at the divisional level over the period 1895–2012.

Version 2 shows increases inmost of the East (except for

parts of the Southeast) and a mixture of increases and

decreases in the West. Version 1 exhibits the same pri-

mary features, but the divisional trends are often larger,

and the overall pattern is less consistent. Discrepancies

are also evident at both the state and divisional levels;

for instance, version 1 has larger increases in Alabama

and South Dakota, and it exhibits drying in small areas

that are mostly surrounded by increases (such as the

northeast division in Arkansas). The lower spatial con-

sistency in version 1 is primarily related to changes in

station coverage through time. As with temperature, the

state-level differences reflect the use of the state-based

regression models in version 1 for the period 1895–1930.

While not shown here, version 2 exhibits only small

trend differences at the divisional level with the Full Net-

work Enhanced Precipitation (FNEP) dataset (McRoberts

and Nielsen-Gammon 2011), a divisional database that

was designed for the analysis of climate variability and

change. In contrast, version 1 exhibits substantial dif-

ferences with FNEP, as thoroughly documented by

McRoberts and Nielsen-Gammon (2011).

Despite division-level differences, version 1, version 2,

and FNEP have very similar trends at the national scale

for the period 1895–2012. In particular, all of the datasets

exhibit statistically significant increases in annual pre-

cipitation (4.0, 3.3, and 4.2mmdecade21, respectively).

These increases are driven primarily by changes in fall

precipitation (2.3, 2.2, and 2.4mmdecade21, respec-

tively). Trends in all other seasons are,1mmdecade21,

and none are statistically significant.

6. Error estimates

Two analyses were performed to provide uncertainty

estimates for version 2. In the first step, cross validation

FIG. 9. As in Fig. 7, but for precipitation.
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was used to quantify interpolation error over the con-

terminous United States as a whole. In the second step,

Monte Carlo simulations were used to estimate error at

the climate division level.

a. Composite grids

Interpolation error was quantified using a cross-

validation exercise consisting of three steps for each

element and calendar month. The first step involved

computing a climate normal residual: the difference

between the actual climate normal at each station and

the normal predicted by the spline surface at that lo-

cation. The second step entailed calculating a climate

anomaly residual: the difference between the actual

anomaly at each station in each year and the anomaly

predicted by neighboring stations (i.e., interpolated via

inverse-distance weighting). Finally, the normal and

anomaly residuals were summed at the station level,

converted to absolute differences, interpolated onto the

5-km grid, and then area averaged over the conterminous

United States.

Figure 11 depicts area-averaged cross-validation er-

rors over the period 1895–2012. For temperature, errors

decrease rapidly until about 1905 and then gradually

until about 1990, remaining relatively stable thereafter.

Errors exceed 1.08C early in the record and attain

present-day minima of about 0.608C for maximum tem-

perature and 0.758C for minimum temperature. From a

seasonal perspective, temperature errors are about a

tenth of a degree smaller in summer than winter. For

precipitation, errors decrease gradually until about

1950 and then generally level off thereafter, with sub-

stantial seasonal and interannual variability through-

out the record. Errors in summer exceed 25mm in the

late nineteenth century, falling to about 20mm in re-

cent years. Errors in winter are about half as large as in

summer.

b. Divisional averages

Divisional error was quantified using a Monte Carlo

exercise that entailed four general steps for each ele-

ment and calendar month. In essence, the objective was

to determine how well historical, low-density networks

reproduced divisional averages based upon contempo-

rary, high-density networks. The first step entailed

selecting a recent year with a high-density network to

serve as a baseline (e.g., 2000). The second step involved

reducing the density of this network such that it mim-

icked the station density in an earlier year (e.g., 1895).

The third step required computing climate anomalies,

composite grids, and divisional values for the baseline

year using only those stations in the reduced network.

The final step involved calculating differences between

reduced- and baseline-network divisional values. The

last three steps were performed 100 times, stations for

each simulation being selected in a stratified random

fashion using 58 3 58 grid boxes as a sampling guide (e.g.,

FIG. 10. As in Fig. 8, but for average annual precipitation trends

(mmdecade21).
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by determining the number of stations in each box in

1895, then randomly selecting stations from the network

in 2000 such that each box had the same number of

stations as in 1895).

Figure 12 summarizes the differences between re-

duced- and baseline-network divisional values on a quin-

quennial basis using 2000 (i.e., the year with the most

stations) as a baseline. The median difference is zero

throughout the period for all elements and months, and

there is a decline in the differences through time. For

temperature, approximately 95% of the divisional dif-

ferences are less than 0.508C by 1900 and less than 0.258C
by 1925; for precipitation, the corresponding differ-

ences are 20 and 15mm, respectively. From a seasonal

perspective, temperature differences exhibit slightly

greater spread in January, which is consistent with larger

variability in winter. In contrast, precipitation differences

exhibit considerably greater spread in July, which is con-

sistent with the spotty nature of convective rainfall during

summer.

Figure 13 depicts median differences at the divisional

level using 2000 for the baseline network and 1895 (i.e.,

the year with the fewest stations) for the reduced net-

work. For temperature, most divisions east of the Rocky

Mountains have differences less than 0.258C. Differ-

ences in the West are about twice as large, with a few

topographically varied divisions exceeding 0.508C. From

a seasonal perspective, temperature differences are

slightly larger in January than in July. For precipitation,

most divisional differences are less than 10mm, with

slightly larger differences in July in the East (reflecting

the region’s higher seasonal totals). In absolute terms,

the largest precipitation differences generally correspond

to areas with the highest average totals (e.g., the Pacific

Northwest in January, Florida in July). As a percent of

normal, however, the largest precipitation differences

usually align with areas having low totals on a clima-

tological basis (such as the Southwest in winter and the

West in summer) or low totals in this particular year (as

in the case of Texas).

7. Summary

This paper described an improved edition of the cli-

mate division dataset for the conterminousUnited States.

The first improvement was to the input data, which now

include additional station networks, quality assurance

reviews, and temperature bias adjustments. The second

improvement was to the suite of climatic elements, which

now includes both maximum and minimum tempera-

tures. The third improvement was to the computational

approach, which now employs climatologically aided

interpolation to address topographic and network

variability.

FIG. 11. Plot of area-averaged cross-validation errors versus time: (top) temperature and

(bottom) precipitation.
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Version 2 exhibits substantial differences from version 1

over the period 1895–2012. For example, divisional aver-

ages in version 2 tend to be cooler and wetter, particularly

in mountainous areas of the western United States.

Division-level trends in temperature and precipitation

display greater spatial consistency in version 2. National-

scale temperature trends in version 2 are comparable to

those in HCN, whereas version 1 exhibits less warming as

a result of historical changes in observing practice. Di-

visional errors in version 2 are likely less than 0.58C for

temperature and 20mm for precipitation at the start of

the record, falling rapidly thereafter; in contrast, meth-

odological considerations precluded the estimation of

divisional uncertainty in version 1. Overall, these results

FIG. 12. Plots of differences between reduced- and baseline-network divisional values. Each year depicts 34 400

differences (i.e., 344 divisions times 100 Monte Carlo simulations). The boxes represent the 25th, 50th, and 75th

percentiles; the diamonds represent the 95th percentiles; and the lines represent the 99th percentiles. The baseline

year was 2000 (i.e., the year with the largest number of stations).
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FIG. 13. Maps of median differences between reduced-network divisional values and baseline-network divisional

values. Medians are based on 100Monte Carlo simulations using the year 1895 for the reduced network and the year

2000 for the baseline network.
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indicate that version 2 can supersede version 1 in both

operational climate monitoring and applied climatic

research.
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APPENDIX

Additional Predictors

The normals for all climatic elements were gridded via

thin-plate smoothing splines that used coordinates and

elevation as predictors. Additional predictors were also

included for individual elements to improve skill in to-

pographic environments that could impact divisional

averages. In particular, a coastal influence index was

used for maximum–minimum temperatures, an inversion

index was used for minimum temperature, and slope–

aspect were used for precipitation. The following is a brief

description of the relatively simple indices used in this

study; for more elaborate alternatives, see Daly et al.

(2008).

a. Coastal index

Coastal influence was modeled using an index that

simulates the impact of distance and terrain on marine

damping of temperature. In essence, the farther a loca-

tion is from the shore, the smaller its index; likewise, the

greater its topographic separation from the shore (e.g.,

leeward exposure), the smaller its index. A simplified

representation is given by

ci5 si2 ti ,

where ci is the coastal influence index for location i (ci5 1

implies maximum coastal effects), si is a distance-decay

term, and ti is a terrain effects term. Distance-decay ef-

fects can exist near any large water body whereas terrain

effects mainly exist on the Pacific coast, where mountain

ranges limit the inland penetration of marine air. The

distance-decay term si is calculated as

si5 exp(
ffiffiffiffiffiffiffiffiffiffiffiffi
2:5/di

3

q
2 1),

where di is the distance to the coast (km). The expo-

nential function imposes a steep decline in coastal in-

fluence within ;10 km of the shore, while full marine

effects are assigned within half a grid cell of the coast

(i.e., si 5 1 if di # 2.5 km). The terrain effects term ti is

computed as

ti 5 si

�
li

�
12

di
100

��2
,

where li is the least-cost path to the coast, cost being

the accumulation of gridded slope values traversed

in reaching the shore. The least-cost path approaches

0.5 in extreme terrain; thus, the penalty can be one-

quarter of the size of the distance-decay effect. The

penalty has its largest impact near the shore, gradually

losing its influence inland and disappearing entirely at

100 km.

b. Inversion index

Atmospheric inversions were modeled using an index

that simulates the vertical profile of nocturnal temper-

ature. This index is zero if the location is above the in-

version or if no climatological inversion exists. If the

location is below the inversion, then the index is the

difference in elevation (km) between the location and

the inversion top. Basically, the index implies that lo-

cations with small differences in elevation are warmer

than those with large differences, the former reflecting

close proximity to the inversion, and the latter indicative

of depressions such as valleys. Stated formally, the in-

version index Di is

Di 5

�
0; zi . hi
hi 2 zi; zi , hi

,

where zi is the elevation of location i and hi is the ele-

vation of the inversion top. The latter is

hi 5 bi 1wi ,

where bi is the smoothed ‘‘base’’ elevation for location i

(as in Daly et al. 2008) and wi is the height of the ‘‘warm

point’’ above the ground. The base elevation bi was

obtained by finding the minimum of the gridded eleva-

tions within a 10-km radius, then averaging the minima

within a 20-km radius (simple thresholds being applied

to exclude falseminima from canyons in adjacent areas).

The warm point wi was obtained using temperature

profiles derived from radiosonde data at 119 stations

(Durre et al. 2006). For each 1200 UTC sounding, tem-

perature was interpolated in 10-m increments above the

surface using mandatory and significant levels as pre-

dictors, and then a normal was computed by month for

each increment. The inversion top was defined as the

warmest point in the climatological profile (Kahl 1990)

or the level at which the lapse rate fell below a critical

threshold (for isothermal profiles). Warm-point surfaces

were then created by month via thin-plate smoothing

splines that used latitude and longitude as predictors, the
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height of the warm point wi being obtained by inter-

rogating the appropriate monthly surface at location i.

c. Slope–aspect indices

The impact of slope and aspect on precipitation was

modeled using eastings and northings (Hutchinson

1998). In essence, the larger the indicator is, the steeper

the slope in that direction, with flat areas having values

of zero. The eastings pi and northings qi are given by

pi 5 cos(ai) sin(ui) and

qi5 sin(ai) cos(ui) ,

where ui and ai are the slope and aspect angles for lo-

cation i, respectively. As in Hutchinson (1998), pi and qi
were computed on a smoothed grid (50 km) to approx-

imate meso-beta-scale phenomena such as enhanced

upslope precipitation and concomitant rain shadows.

Smoothing was performed using a focal median tech-

nique and a 32-cell search radius.

d. Interpolation skill

Cross validation was employed to estimate the im-

provement resulting from the additional predictors.

Specifically, normals for each station were estimated

twice: once using a simplified model (i.e., only co-

ordinates and elevation) and once using the full model

(i.e., including the additional predictors). Improve-

ments are illustrated here by examining states where

the full models are more impactful (e.g., California,

Nevada, and Washington). In California, which has cool

onshore flow in summer, the coastal influence index re-

duces the mean absolute error (MAE) for maximum

temperature in July by 0.178C (from 1.458 to 1.288C) for
coastal stations (i.e., 0.0 # dj # 5.0 km). Estimated nor-

mals have a warm bias of 0.778C without the index, in-

dicating the simplified model underestimates the marine

influence. In the full model, the estimated normals have

a slight cool bias of 0.218C. In Nevada, where inversions

are common in winter amid the basin and range topog-

raphy, the inversion index reduces the MAE for mini-

mum temperature in January by 0.148C (from 1.048 to
0.908C) for stations just below the inversion (i.e., 0.0 #

hi # 0.2 km). Estimated normals have a cool bias of

0.348C without the index, indicating the simplified model

underestimates the temperature increase near inversions.

In the full model, the bias falls to 0.118C. In Washington,

where orographic lifting is common, the slope–aspect

indices reduce the MAE for precipitation in January by

8.6mm (from 16.6 to 8.0mm) for sites on the steepest

20% of slopes (i.e., pi or qi $ 0.0125). As a percent of

normal, this is a drop from 10.0% to 4.5%.

Notably, Figs. 4–6 contain patterns directly attribut-

able to the additional predictors, that is, features that are

nonexistent or muted on maps based on simplified

models (not shown). For instance, Fig. 4 depicts a narrow

band of cooler maximum temperatures near the Pacific

resulting from the coastal influence index. Similarly,

Fig. 5 depicts an increase in minimum temperature with

height up to midslope resulting from the inversion index.

Finally, Fig. 6 shows stronger orographic effects along the

Mogollon Rim resulting from the slope/aspect indices.
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