
stations (Fig. 10, bottom, and Table 1). The persistence 
of a strong negative phase of the North Atlantic Oscil-
lation in December 2010 could have made 2010/11 the 
thirteenth coldest winter since 1948 if large-scale dy-
namics was the sole driver of temperature variations. 
During this particular season the difference between 
observed and analog temperatures peaks over south-
western Europe, suggesting that local processes may 
have inhibited the maintenance of cold anomalies in 
this region. For all other seasons, spatial patterns of 
observed and analog anomalies are better correlated. 
In particular, large-scale circulations contributed to 
both exceptionally warm spring and autumn over 
western Europe, up to respectively ~40% and ~20% of 
observed anomalies. Summer dynamics were rather 
favorable to cold weather over France and Spain, 
thus preventing the development of a potential heat 
wave that dry conditions at the end of spring could 
have nurtured.

At the intraseasonal time scale, observed tem-
peratures of 2011 were 29% of the time above the 
maximum of the 10 analog temperatures, and 77% 
above the median (Fig. 11a). This is significantly high-
er than the expected statistical values, respectively 

1/11 = 9% (2.5–20%) and 1/2 = 50% (35%–65%) 
(brackets indicate 95% confidence intervals obtained 
from binomial quantiles assuming 40 independent 
days among the 396 of Fig. 11a). The heat waves of late 
April, late August, and late September were largely 
underestimated by the analogues, despite relatively 
high correlations between observed and analog SLP 
during these three periods (not shown). Overall, 
the analog temperature of year 2011 reaches 0.7σ, 
suggesting that large-scale circulations contributed 
to ~33% of the observed anomaly (Fig. 11b).

Conclusions. 2011 fits into the pattern of recent years 
where observed temperatures are distinctly warmer 
than analog temperatures. This is true for seasons 
with cold anomalies which are not as cold as expected 
from flow-analogues (e.g., winter 2009/10; see C10) 
and warm seasonal anomalies, that are hotter than 
the corresponding analog seasons (e.g., autumn–
winter 2006/07; see Yiou et al. 2007). In addition, 
high interannual correlations between observed and 
analog temperatures confirm that the North Atlantic 
dynamics remains the main driver of European tem-
perature variability, especially in wintertime.

T he Central England Temperature (CET) data set  
 is the oldest continuously running temperature  
 dataset in the world (Manley 1974) and records 

temperatures over a central area of England stretching 
between Lancashire, Bristol, and London. The decade 
of 2002–11 has been a particularly interesting one for 
CETs, with a number of warm autumns (2009, 2011), 
along with a number of cold winters (2009/10, 2010/11). 

The emergent science of probabilistic event 
attribution is becoming an increasingly important 
method of evaluating the extent of how this human-
inf luenced climate change is affecting localized 

weather events. Studies into the European heat wave 
of 2003 (Stott et al. 2004), the England and Wales 
f loods of 2000 (Pall et al. 2011), and the Russian 
heat wave of 2010 (Dole et al. 2011; Rahmstorf and 
Coumou 2011; Otto et al. 2012) have sought to 
determine to what extent the risks of these events 
occurring have increased because of anthropogenic 
global warming.

We follow a similar methodology to Pall et al. 
(2011), which uses very large ensembles of global cli-
mate models (GCMs) to assess the change in risk of 
autumn flooding in the United Kingdom under two 
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different climate scenarios: observed autumn 2000 
and a natural-only forcing autumn 2000. However, 
our two climate scenarios are based both on observa-
tions, one scenario for the 1960s decade and one for 
the 2000s. The method of Pall et al. (2011) decouples 
the anthropogenic signal from the natural variability 
by ensuring that the natural variability is the same 
in both scenarios. Although our method does not 
permit decoupling, using decadal long scenarios 
reduces some of the effects of natural variability and 
allows both scenarios to be validated against observed 
data. We have also expanded the method to use a 
regional climate model (RCM) embedded within a 
GCM. The increased resolution of the RCM results 
in a more realistic simulation of localized weather 
events, including cold and warm temperatures (Jones 
et al. 2004).

In this section we use large ensembles of the two 
climate scenarios to evaluate whether the frequency 
of warm Novembers and cold Decembers occurring 
has altered between the 1960s and 2000s, this being 
the period during which there has been a significant 
anthropogenic influence on climate.

Method. Weatherathome is a volunteer-distributed 
computing project that uses idle computing time from 
a network of “citizen scientists” home computers to 
run an RCM embedded within a GCM. The models 
used are HadAM3P, an atmosphere only, medium-

resolution (1.875° × 1.25°, 19 levels, 15-min time step) 
GCM and HadRM3P, a high-resolution (0.44° × 0.44°, 
19 levels, 5-min time step) RCM. Both models have 
been developed by the UK Met Office and are based 
upon the atmospheric component of HadCM3 (Pope 
et al. 2000; Gordon et al. 2000) with some improve-
ments to the sulfur cycle and cloud parameterizations 
(Jones et al. 2004). The coupling between the models 
is performed every 6 h when the lateral boundary 
conditions of the RCM are relaxed to the GCM across 
four perimeter grid boxes (Jones et al. 2004)

Each volunteer's computer runs both models for 
a model year at a time, with initial conditions being 
provided by model runs previously completed by 
other volunteers. In this way, very large ensembles 
of RCMs can be computed, on the order of thou-
sands, which in turn allows greater confidence when 
examining the tails of the distribution of climate 
variables.

The results examine the changing frequency of 
warm Novembers and cold Decembers since the 
1960s. Two periods are analyzed, the 2000s and the 
1960s which both use sea surface temperatures (SST) 
and sea ice fractions (SIF) from the HadISST obser-
vational dataset (Rayner et al. 2003). Atmospheric 
gas concentrations, including CO2, N2O, CH4, O3, 
and the halocarbons, are taken from observations 
and Special Report on Emissions Scenarios (SRES) 
scenario A1B (Nakicenovic and Swart 2000). Natural 

Fig. 12. (a) Quantile-quantile plot for November and December of the 1960–1969 decade. Uncorrected ensemble 
data are shown with a solid line, whereas the same ensemble data corrected for bias in the mean and standard 
deviation are shown with a dashed line. The squares denote the 5th, 10th, 50th, 90th, and 95th percentiles. (b) 
As in (a), but for the 2000–2009 decade.
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volcanic emissions are assigned values from Sato 
et al. (2011). Finally, a modification to the model 
allows a variable solar forcing, which is taken from 
Krivova et al. (2007) and Lockwood et al. (2011). 
The topography and land use remain unchanged 
between scenarios.

Validation and bias correction. To analyze the results 
from the regional modeling experiment, four separate 
ensembles are formed from the data. Each data point 
in each ensemble is the mean of 27 grid boxes from 
the regional model, corresponding to 9 grid boxes 
centered over London, 9 over Bristol, and 9 over 
Manchester, which replicates the spatial distribution 
of the CET. The four ensembles are: all the Novembers 
occurring in the 1960s, all Decembers in the 1960s, 
all Novembers in the 2000s, and all Decembers in the 
2000s. To ensure that the distribution of temperatures 
in these ensembles are representative of the distribu-
tion of the observed Central England Temperature, a 
validation exercise is performed.

Figure 12a shows quantiles of temperatures in 
the ensembles of 1960s Novembers and Decembers 
against the corresponding quantiles in the CET 
dataset. Figure 12b shows the same for the 2000s 
ensembles. The solid lines are the raw ensemble data, 
whereas the dashed lines are the result of applying 
a simple bias correction to ensure the means and 
standard deviations of the ensembles match the 
means and standard deviations of the observed CET 

dataset. The same bias correction is applied to both 
the 1960s and 2000s.

After the bias correction, there is good agreement 
between the ensembles and observations, giving con-
fidence that any change in return time is representa-
tive of the change in return time in the observations.

Results and conclusions. Figure 13a shows the return 
times of warm temperatures in November in both 
the 1960s ensemble (blue) and 2000s ensemble (red). 
The temperature of a 100-yr event in Novembers 
in the 2000s has increased to 10.42°C from 8.97°C. 
The warm November of 2011, which is the second 
warmest in the CET, has a monthly mean tempera-
ture of 9.6°C. This corresponds to a return period 
of 20 years in the 2000s, but a return period of 
1250 years in the 1960s, an approximately 62 times 
increase in occurrence.

Figure 13b shows the return times of cold tem-
peratures in December in both the 1960s and 2000s. 
Although the occurrence of a cold December in the 
2000s has decreased from the 1960s, the difference 
in temperature of the 100-yr event is 0.87°C. The 
cold December of 2010, which is the second coldest 
December and coldest since 1890, has a monthly 
mean temperature of –0.7°C, which has a return 
period of 139 years in the 1960s and a return period 
of 278 in the 2000s. Therefore, a cold December of 
–0.7°C is half as likely to occur in the 2000s when 
compared to the 1960s.

Fig. 13. (a) Return times of temperatures for November in the 1960–1969 decade (blue curve) and the 2000–2009 
decade (red curve). The observed value for the warm November 2011 of 9.6°C is shown on both curves as a 
solid, larger circle, with a return period in 1960–1969 of 1250 years and in 2000–2009 of 20 years. (b) Return 
times of temperatures for December in the 1960–1969 decade (blue curve) and the 2000–2009 decade (red 
curve). The observed value for the cold December 2010 of –0.7°C is again shown as a solid, large circle, with a 
return period in 1960–1969 of 139 years and in 2000–2009 of 278 years.
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