
 he occurrence of high-impact extreme weather  
 and climate variations invariably leads to  
 questions about whether the frequency or intensity 

of such events have changed, and whether human influ-
ence on the climate system has played a role. Research 
on these questions has intensified in recent years, cul-
minating in two recent assessments (Karl et al. 2008; 
Field et al. 2012), and in proposals to formalize “event 
attribution” as a global climate service activity (Stott 
et al. 2012). In order to provide historical context for 
later sections, this section discusses the extent to which 
human influence has caused long-term changes in the 
frequency and intensity of some types of extremes.

The nature of extreme events. The term “extreme” 
is used in a number of contexts in climate science. 
It refers to events that may in fact not be all that 
extreme, such as the occurrence of a daily maximum 
temperature that exceeds the 90th percentile of daily 

variability as estimated from a climatological base 
period, or it may refer to rare events that lie in the far 
tails of the distribution of the phenomenon of interest. 
A characteristic of extremes is that they are under-
stood within a context—and thus seasonal or annual 
means may be “extreme” just as an unusual short-term 
event, such as a daily precipitation accumulation, 
may be extreme. Certain phenomena, such as tropi-
cal cyclones that have been classified on the Saffir–
Simpson scale, or tornadoes that have been classified 
on the Fujita scale, are considered extreme as a class. 
The general definition of extremes that was adopted 
by the IPCC for its Special Report on Extremes (Field 
et al. 2012) applies to most extremes considered in this 
report, and across the range of space and time scales 
that are considered here. That definition describes an 
extreme as the “occurrence of a value of a weather or 
climate variable above (or below) a threshold value 
near the upper (or lower) ends of the range of observed 
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values of the variable.” A full discussion of the defini-
tion of an extreme can be found in Seneviratne et al. 
(2012). In addition, Zwiers et al. (2012, unpublished 
manuscript) provide a discussion of the language sur-
rounding extremes that is used in the climate sciences.

Challenges in detection and attribution of extremes. 
The discussion in this section reflects the fact that 
most detection and attribution research on long-term 
changes in the probability and frequency of extremes 
thus far has focused on short duration events that 
can be monitored using long records of local daily 
temperature and precipitation observations. These 
changes are generally captured as indices that docu-
ment the frequency or intensity of extremes in the 
observed record rather than focusing on individual 
rare events. In contrast, many of the events consid-
ered in later sections of this report are individual 
events, often of longer duration than the extremes 
considered here, and are also usually events with 
longer return periods. Nevertheless, the finding that 
human influence is detectable in some types of short 
duration events that can be conveniently monitored 
from meteorological observations provides important 
context for the interpretation of other types of events. 
For example, feedbacks and physical processes that 
influence individual large events (Fischer et al. 2007; 
Seneviratne et al. 2010) will often also be at play in 
events that are ref lected in indices. Thus, index-
based studies are helpful for providing context for 
the attribution of individual events, and evaluate 
the ability of models to realistically simulate events 
that are affected by different feedbacks from those 
affecting mean climate. 

While not discussed in this section, the detection 
and attribution of changes in the mean state of the 
climate system often also provides important context 
for the understanding of individual extreme events. 
An example is the European 2003 heat wave, which 
can be characterized both by very extreme warm 
daily maximum and minimum temperatures, and by 
an extremely warm summer season. The demonstra-
tion that human factors had influenced the climate 
of southern Europe in a quantifiable way over the 
latter part of the twentieth century was an important 
element in establishing that human influence had 
probably substantially increased the likelihood of an 
extreme warm summer like that experienced in the 
region in 2003 (Stott et al. 2004). 

The frequency and intensity of extremes can be 
affected by both the internal variability of the climate 
system and external forcing, and the mechanisms 
involved can be both direct (e.g., via a change in the 

local energy balance) and indirect (e.g., via circula-
tion changes). This makes the attribution of events to 
causes very challenging, since extreme events in any 
location are rare by definition. However, global-scale 
data make it possible to determine whether broadly 
observed changes in the frequency and intensity of 
extremes are consistent with changes expected from 
human influences, and inconsistent with other pos-
sibilities such as climate variability. Results from 
such detection and attribution studies provide the 
scientific underpinning of work determining changes 
in the likelihood of individual events.

Observed changes in extremes. We briefly consider 
historical changes in frequency and intensity of 
daily temperature and precipitation extremes. There 
is a sizable literature on such events, in part because 
reliable long-term monitoring data are gathered 
operationally by meteorological services in many 
countries. Many other areas remain understudied, 
such as whether there have been changes in the 
complex combinations of factors that trigger impacts 
in humans and ecosystems (e.g., Hegerl et al. 2011), 
or areas that are subject to greater observational 
and/or process knowledge uncertainty, such as the 
monitoring and understanding of changes in tropical 
cyclone frequency and intensity (e.g., Knutson et al. 
2010; Seneviratne et al. 2012).

Changes in extreme temperature and the 
intensification of extreme precipitation events are 
expected consequences of a warming climate. A 
warmer climate would be expected to have more in-
tense warm temperature extremes, including longer 
and more intense heat waves and more frequent 
record-breaking high temperatures than expected 
without warming. It would also be expected to 
show less intense cold temperature extremes and 
fewer record-breaking low temperatures than ex-
pected before. Both of these expected changes in the 
occurrence of record-breaking temperatures have 
indeed been observed (e.g., Alexander et al. 2006; 
Meehl et al. 2009). Further, a warmer atmosphere 
can, and does, contain more water vapor, as has 
been observed and attributed to human influence 
(Santer et al. 2007; Willett et al. 2007; Arndt et al. 
2010). This implies that more moisture is available 
to form precipitation in extreme events and to 
provide additional energy to further intensify such 
events. About two-thirds of locations globally with 
long, climate-quality instrumental records [e.g., 
as compiled in the Hadley Centre Global Climate 
Extremes dataset (HadEX); Alexander et al. 2006] 
show intensification of extremes in the far tails of 
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the precipitation distribution during the latter half 
of the twentieth century (Min et al. 2011).

Detection and attribution of changes in intensity and 
frequency of extremes. A number of studies (e.g., 
Christidis et al. 2005, 2010; Zwiers et al. 2011; Morak 
et al. 2011, 2012) have now used various types of 
detection and attribution methods to determine 
whether the changes in temperature extremes pre-
dicted by climate models in response to historical 
greenhouse gas increases and other forcings are 
detectable in observations. The accumulating body 
of evidence on the human contribution to changes 
in temperature extremes is robust, and leads to 
the assessment that “it is likely that anthropogenic 
inf luences have led to warming of extreme daily 
minimum and maximum temperatures on the global 
scale” (Seneviratne et al. 2012). Results tend to show 
that the climate models used in studies simulate 
somewhat more warming in daytime maximum 
temperature extremes than observed, while under-
estimating the observed warming in cold extremes 
in many locations on the globe. It remains to be 
determined if this model-data difference occurs 
consistently across all models, or whether it is spe-
cific to the small set of phase 3 of the Coupled Model 
Intercomparison Project (CMIP3) climate models 
used in the studies. 

Heavy and extreme precipitation events have 
also received a considerable amount of study. 
Heavy precipitation has been found to contribute an 
increasing fraction of total precipitation over many 
of the regions for which good instrumental records 
are available (Groisman et al. 2005; Alexander et al. 
2006; Karl and Knight 1998; Kunkel et al. 2007; 
Peterson et al. 2008; Gleason et al. 2008), indicating 
an intensification of precipitation extremes. Direct 

examination of precipitation extremes, such as the 
largest annual 1-day accumulation, or the largest 
annual 5-day accumulation, also shows that extreme 
precipitation has been intensifying over large parts 
of the global landmass for which suitable records 
are available (Alexander et al. 2006; Min et al. 2011; 
Figs. 1 and 2), with an increase in the likelihood of a 
typical 2-yr event of about 7% over the 49-yr period 
from 1951 to 1999 (Min et al. 2011). It should be 
noted, however, that the spatial extent of regions for 
which long records of daily and pentadal precipita-
tion accumulations are available is still severely 
limited (e.g., Alexander et al. 2006; see also Fig. 1), 
and that spatial patterns of change are still noisy. 

The intensification of extreme precipitation is an 
expected consequence of human influence on the cli-
mate system (e.g., Allen and Ingram 2002; Trenberth 
et al. 2003) and is simulated by models over the latter 
half of the twentieth century in response to anthro-
pogenic forcing, albeit with weaker amplitude than 
observed, which is at least partly due to differences 
in the spatial scales resolved by climate models and 
station-based local records (Chen and Knutson 2008). 
Nevertheless, Min et al. (2011) recently showed, using 
an ensemble of models and an index of extreme pre-
cipitation that is more comparable between models 
and data than records of intensity of events, that the 
observed large-scale increase in heavy precipitation 
cannot be explained by natural internal climate 
variability, and that human inf luence on climate 
provides a more plausible explanation. The body of 
research available on precipitation extremes is in an 
earlier stage of development than for temperature 
extremes, and thus Seneviratne et al. (2012) did not 
give a quantified likelihood assessment concerning 
precipitation extremes, but rather stated that “there 
is medium confidence2 that anthropogenic influences 

Fig. 1. Geographical distribution of trends of probability-based indices (PI) of extreme precipitation 
during 1951–99 for 1-day precipitation accumulations. Annual extremes of 1-day accumulations were 
fitted to the Generalized Extreme Value distribution, which was then inverted to map the extremes 
onto a 0%–100% probability scale. Blue colors indicate intensification of extreme precipitation, which 
is observed at about two-thirds of locations. From Min et al. (2011).
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in the first decade of the twenty-first 
century have yet been performed 
(exceptions include Morak, et al. 
(2011, 2012, manuscript submitted 
to J. Climate), who detect anthro-
pogenic influence in the frequency 
of occurrence of temperature ex-
tremes in data that extend to 2005]. 
However, studies of changes in 
extremes that include more recent 
observations show that ongoing 
changes in temperature extremes 
are regionally consistent with those 
observed in the latter half of the 
twentieth century. Examples include 
studies of the frequencies of warm 
and cold days and nights in North 
America (Peterson et al. 2008); 
the frequency of record breaking 
temperatures in the United States 
(Meehl et al. 2009); and the fre-
quency of temperature extremes in 

multiple regions globally (Morak et al. 2011, 2012, 
manuscript submitted to J. Climate). Results from 
recent studies of precipitation extremes are more 
mixed. Some studies do show changes consistent 

Fig. 2. Time series of five-year mean area-averaged PI (as defined in 
Fig. 1) anomalies (%) for 1-day annual extreme precipitation anoma-
lies over Northern Hemisphere land during 1951–99. Black solid line 
represents observations and the dashed line represents the multi-
model mean for the models indicated in the legend. Model simula-
tions were run with anthropogenic forcings. Colored lines indicate 
results for individual model averages [see Supplementary Table 1 
of Min et al. (2011) for the list of climate model simulations and 
Supplementary Fig. 2 of Min et al. (2011) for time series of individual 
simulations]. Each time series is represented as anomalies with 
respect to its 1951–99 mean.

2 See Mastrandrea et al. (2010) for a description of IPCC confidence language used in the IPCC Fifth Assessment, including 
the Special Report on Extremes (Field et al. 2012).

Fig. 3. Impact of (left) El Niño and (right) La Niña on the intensity of the largest 1-day precipitation event 
monthly in the November–April half of the year. Based on station data from the Global Historical Climatology 
Network-Daily (GHCN-D) for 1949–2003. From Kenyon and Hegerl (2010).

have contributed to intensification of extreme precipi-
tation on the global scale.”

Few detection and attribution studies that include 
observations of temperature or precipitation extremes 
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with those observed in the latter part of the twentieth 
century [e.g., the fraction of U.S. land area affected 
by extreme precipitation (Gleason et al. 2008), change 
in various extreme precipitation indicators in North 
America (Peterson et al. 2008), and heavy precipita-
tion in Europe (Zolina et al. 2010)], while others do 
not demonstrate evidence of statistically significant 
trends [e.g., Choi et al. (2009) for the Asia-Pacific 
region and Aguilar et al. (2009) for central Africa; 
see also the assessment of Seneviratne et al. (2012)]. 
Overall, changes in precipitation remain regionally 
mixed, testifying to the high spatial variability of 
precipitation.

Natural low frequency internal variability of 
the climate system also affects the intensity and 
frequency of temperature and precipitation extremes, 

generally with a mixed pattern of increasing and 
decreasing responses depending on regions and 
seasons. For example, El Niño strongly influences 
both temperature and precipitation extremes glob-
ally (Kenyon and Hegerl 2008, 2010; see Fig. 3) and 
can alter the likelihood of rare damaging wintertime 
precipitation events by more than a factor of 4 in 
some parts of the United States, particularly in the 
southwest (Zhang et al. 2010). Any human inf lu-
ence on extreme weather risk combines with these 
episodic variations and the chance fluctuations that 
are inevitable when dealing with rare events; hence 
we should not assume that, if human influence is 
making a particular type of event more likely over 
time, it will necessarily occur with greater than 
average likelihood every year.

T 
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